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Abstract

Two recent papers [11] and [19] study the lower tail of triangle count deviations in
random graphsG(n,m) with positive density t := m/

(
n
2

)
∈ (0, 1). Let us writeD4(G)

for the deviation of the triangle count from its mean. Results of [11] and [19] deter-
mine the order of magnitude of the log probability log(P

(
D4(G(n,m)) < −τ

(
n
3

))
)

for the ranges n−3/2 � τ � n−1 and n−3/4 � τ � 1 respectively. Furthermore,
in [19] it is proved that the log probability is at least Ω(τ2n3) in the “missing” range
n−1 � τ � n−3/4, and they conjectured that this result gives the correct order of
magnitude. Our main contribution is to prove this conjecture.
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1 Introduction
The study of subgraph count deviations, and especially triangle count deviations has been
a very active area of research in recent decades. In particular, a great many results have
been proved regarding small deviations (of the order of the standard deviation) beginning
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with Ruciński [22], see also [2, 14, 13, 15, 17, 20, 21]. There have also been many results
which focus on large deviations (of the order of the mean) including the seminal articles of
Vu [23] and Janson and Ruciński [16] in the early 2000s, and continuing with Chatterjee
and Varadhan [4] who related these deviations to solutions to variational problems, which
were resolved in certain cases by Lubetzky and Zhao [18] and Zhao [24]. The survey of
Chatterjee [3] and the references therein give a detailed overview. Further developments
related to these techniques may be found in [1, 5, 9]. A major breakthrough by Harel,
Mousset and Samotij [12] essentially resolved the large deviation (upper tail) problem for
triangles.

There has also been some interest in deviations of intermediate value, which we call
moderate deviations. These deviations are considered in the G(n, p) model in [7, 8, 10].
It is argued by the third author, together with Goldschmidt and Scott [11] that for many
moderate deviation problems the G(n,m) model is more appropriate as it is possible to
study finer causes of deviatons, and that, in any case, one may deduce results for G(n, p)
by a simple conditioning argument. See also [6], which extends these results to sparser
random graphs.

Let us now consider the model Gm ∼ G(n,m), in which Gm is selected uniformly
from graphs with n vertices and m edges. Suppose that t ∈ (0, 1) is fixed and that
our random graphs have density t, that is t = m/

(
n
2

)
. Let N4(G) be the number of

triangles in the graph G and let D4(Gm) be the deviation of the triangle count in Gm, i.e.,
D4(Gm) := N4(Gm) − E [N4(Gm)].

We also remark that the majority of results previously mentioned have focussed on the
upper tail, whereas we shall focus on the lower tail. That is, we consider the question of
how likely it is that a random graph has many fewer triangles than expected.

By the main results of [11] and Neeman, Radin and Sadun [19] respectively, we have

− log

[
P
(
D4(Gm) < −τ

(
n

3

))]
=

{
Θ(τ 2n3) n−3/2 � τ � n−1

Θ(τ 2/3n2) n−3/4 � τ � 1

Furthermore, Neeman, Radin and Sadun [19] obtained the bounds

exp(−Cτ 2/3n2) 6 P
(
D4(Gm) < −τ

(
n

3

))
6 exp(−cτ 2n3)

in the “missing” range n−1 � τ � n−3/4, for some constants c, C > 0. They conjectured
that the final quantity is the correct probability of this deviation, up to the choice of the
constant C. We prove this conjecture, thus completing the understanding of the order
of magnitude of deviations in the lower tail across essentially the entire range of possible
deviations.

Theorem 1. Let t ∈ (0, 1). There exists a constant c > 0 such that the following holds.
Suppose that n is sufficiently large and c−1n−1 6 τ 6 cn−3/4 then

P
(
D4(Gm) < −τ

(
n

3

))
> exp(−cτ 2n3) .
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2 Preliminaries
As we are claiming a lower bound on the deviation probability we must justify that there
is a certain reasonably likely “cause” of this deviation. In works that consider the upper
tail this is often a fixed subgraph (such as a clique or hub) which occurs with a certain
probability. As Neeman, Radin and Sadun [19] discovered, the situation is more subtle
for the lower tail. In the range of slightly larger deviations they showed that the likeliest
“cause” corresponds to a deviation event of the smallest eigenvalue.

We shall give a quite different “cause” of the triangle deficit. Roughly speaking, we
consider running the majority of the process, and then, near the end, we select a certain
set of pairs (non-edges) which have small codegree. If in the rest of the process we select
many more of these pairs than expected then this causes a deficit of triangles in the final
graph Gm. We show that this cause has a cost of exp (−Θ(τ 2n3)), thus proving Theorem 1.

In fact, to implement this approach we have to be slightly more careful about the set
of pairs of low co-degree, which we will call F−. It will be useful that F− is close to
regular. We therefore introduce a concept of synergy, which we use instead of codegree
when defining F−.

Notation

We write du(G) for the degree of a vertex u in G and duv(G) for the codegree of the pair
u, v.

We now define synergy. The synergy of u and v with respect to G is

Synuv(G) := duv(G)− tdu(G)− tdv(G) + t2(n− 2).

The synergy of a pair of vertices can be thought of as how well their neighbourhoods
intersect. As we are dealing with well behaved graphs, i.e. graphs with high probability
properties, if a pair has positive synergy, then a high proportion of the neighbourhoods of
its vertices intersect, and the opposite is true for negative synergy.

As we said, our proof involves revealing Gm into two parts, which we call G0
m and

G1
m. The first part will correspond to the first m0 := (1− η)m edges added to Gm, where

η ∈ (0, 1). We note that G0
m ∼ G(n, (1 − η)m), and we shall assume at various points in

the proof that G0
m has the standard properties which hold with high probability in such

random graphs.
The negative deviation of triangles will come with the selection of G1

m. We note that
G1
m corresponds to the last m1 := ηm edges of the random process.
Let (fi) be the sequence of non-edges of G0 with non-decreasing order of synergies. The

set of non-edges of low synergy is

F− :=

{
fi : i ∈

{
1, . . . ,

(
n
2

)
−m0

2

}}
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and the set of non-edges of high synergy is

F+ :=

{
fi : i ∈

{(
n
2

)
−m0

2
+ 1, . . . ,

(
n

2

)
−m0

}}
.

Discussion of our approach

Let us first ask: What is the expected value of |F− ∩ E(G1
m)|? Since F− and F+ have the

same size, we have that E [|F− ∩ E(G1
m)|] = E [|F+ ∩ E(G1

m)|] = m1

2
= η

2
m. Moreover,

the same equalities holds if we replace the expectation by the conditional expectation
(given G0

m). With this in mind, we define the event

Definition 2 (The Event E(α)). Let α ∈ (0, 1) be a parameter. We denote by E(α) the
event defined by “|F− ∩ E(G1

m)| = (1 + α)m1/2”.

Note that this event relies on first revealing G0
m, as F− is defined as a function of G0

m.
Since pairs of low synergy tend to have smaller codegree, there ought to be a relation
between selecting more edges of G1

m in F− and a deficit of triangles in the final random
graph Gm. This idea is central to our approach.

3 Main result
As we will simply provide a proof overview here, some of the details will be left somewhat
vague. For example, it is useful to have a graph property P0 such that PG0(P0) = 1+o(1).
This graph property consist of various properties which hold with high probability in
random graphs. We note that, by monotony and conditioning, and the fact that E(α) is
independent of G0

m (and so also P0) we have

P (N4(G) < E [N4(G)]− a) >

(1 + o(1))P (E(α)) P
(
N4(G) < E [N4(G)]− a

∣∣ E(α),P0

)
.

Given this inequality, it suffices to prove the following two lemmas:

Lemma 3. Let α := αn with n−1 � αn � n−1/4. Then

P (E(α)) > exp
(
−Ot,η(α

2n2)
)
. (3.1)

Lemma 4. There exists C > 0 such that the following holds. If n is sufficiently large and
αn5/2 > Ca then

P
(
N4(G) < E [N4(G)]− a

∣∣ E(α),P0

)
= n−Ot,η(1) = eo(n) . (3.2)
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We remark that Lemma 3 follows easily from known bounds on the tail of the hyperge-
ometric distribution. The proof of Lemma 4 is more involved. However, the result clearly
follows from the following statement (and Markov’s inequality)

E [N4(G) | E(α),P0] 6 E [N4(G)] − 2a . (3.3)

To prove (3.3) we consider the various types of triangle which occur in the final graph. We
divide the triangle count into four categories: three edges from G0

m, 4(3,0), two edges from
G0
m and one from G1

m, 4(2,1), one edges from G0
m and two from G1

m, 4(1,2) and three edges
from G1

m, 4(0,3). The idea is that the number of edges of type (3, 0) is predictable, as G0
m

is a random graph; the number of type (2, 1) is significantly less than one would expect,
because we are conditioning on the event E(α); and we shall prove that the conditioning
does not change the expected number of types (1, 2) and (0, 3) by very much.

The following result states that conditioning on E(α) does indeed have the effect of
reducing the expected number of triangles of type (2, 1). The result mentions µ− and µ+

which are defined to be the average codegree of pairs in F− and F+ respectively. One of
the properties in P0 is that µ+ − µ− = Ω(n1/2).

Lemma 5.
E
[
4(2,1)|P0, Eη(α)

]
= EG0

m
[4(2,1)] + αmη(µ− − µ+)

The alert reader may question why we chose to define F− in terms of synergy, rather
than simply taking F− to be those pairs with smaller codegree. Indeed, Lemma 5 would
work just as well with this alternative definition. However, the problem arises when trying
to control the effect that conditioning (on E(α)) has on the expected number of triangles
of types (1, 2) and (0, 3). We are able to prove sufficiently strong bounds

E
[
4(1,2)|P0, Eη(α)

]
= O(αηmn1/2) and

E
[
4(0,3)|P0, Eη(α)

]
= O(αηmn1/2)

using the fact that F− is close to regular. (These bounds are seen to be sufficient by taking
the constant η sufficiently small.) We remark that our proofs of these bounds rely on the
fact that F− is close to regular, and so would fail if F− was defined directly in terms of
codegrees.

In order to prove F− is close to regular we actually prove the following stronger state-
ment about the set of synergies Synuw(G0

m) : w ∈ V \Nu between a fixed vertex u and its
non-neighbours w. Let σ denote the standard deviation of Synuw(G0

m) (which is of order
n1/2). The following result states an approximate central limit theorem for the empirical
distribution of synergies.

Lemma 6. There exists a constant C > 0 such that, with high probability the following
holds simultaneously for all vertices u ∈ V (G0

m):∣∣{w ∈ V \Nu : Synuw(G0
m) 6 aσ}

∣∣ =
(
Φ(a) ± Cn−1/4

)
(n− du(G0

m)) .

Using this approximation of the distribution of synergies together with other concen-
tration bounds and tools such as Goodman’s theorem it is possible to control the expected
number of triangles of type (1, 2) and (0, 3) and thereby prove (3.3).
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4 Remarks
As we said, Neeman, Radin and Sadun [19] showed that their construction for the lower
bound holded even for the missing range. Their construction involved partitioning the
graph into two parts in which the smaller part (much smaller than the other) have a
lower density of edges. Hence, they focused on partitioning the vertex and we, instead,
partitioned the edges, which should be more effective for G(n,m) type of graphs since their
structure is more rigid.

There are a number of questions which remain open. For example, is it possible to
extend these results, and the results of [19] to sparser random graphs, as [6] did with the
results of [11]. One may also ask whether stronger bounds may be proved. Perhaps it is
possible to determine the log probability asymptotically, rather than up to a multiplicative
constant. It seems possible to divide our construction further into finer steps with scaling
tendencies towards low synergy pairs to get optimal results.

Finally, it would be interesting to investigate other graphs. We remark that the results
we prove here correspond to a regime which simply doesn’t exist for odd cycles of length
at least 5. Surprisingly [19] showed that the log probability exhibits a large discontinuity
when considering odd cycles of length at least 5.
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