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Abstract

The set-colouring Ramsey number Rr,s(k) is defined to be the minimum n such
that if each edge of the complete graphKn is assigned a set of s colours from {1, . . . , r},
then one of the colours contains a monochromatic clique of size k. The case s = 1
is the usual r-colour Ramsey number, and the case s = r − 1 was studied by Erdős,
Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972.

The first significant results for general s were obtained only recently, by Conlon,
Fox, He, Mubayi, Suk and Verstraëte, who showed that Rr,s(k) = 2Θ(kr) if s/r is
bounded away from 0 and 1. In the range s = r − o(r), however, their upper and
lower bounds diverge significantly. In this note we introduce a new (random) colour-
ing, and use it to determine Rr,s(k) up to polylogarithmic factors in the exponent for
essentially all r, s and k.
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1 Introduction
The r-colour Ramsey number Rr(k) is defined to be the minimum n ∈ N such that every
r-colouring χ : E(Kn) → {1, . . . , r} of the edges of the complete graph on n vertices con-
tains a monochromatic clique of size k. These numbers (and their extensions to general
graphs, hypergraphs, etc.) are among the most important and extensively-studied objects
in combinatorics, see for example the beautiful survey article [4].

In this paper we will study the following generalisation of the r-colour Ramsey numbers.

Definition 1.1. The set-colouring Ramsey number Rr,s(k) is the least n ∈ N such that
every colouring χ : E(Kn)→

(
[r]
s

)
contains a monochromatic clique of size k, that is, a set

S ⊂ V (Kn) with |S| = k and a colour i ∈ [r] such that i ∈ χ(e) for every e ∈
(
S
2

)
.

That is, we assign a set χ(e) ⊂ [r] = {1, . . . , r} of s colours to each edge of the complete
graph, and say that a clique is monochromatic if there exists a colour i ∈ [r] that is assigned
to every edge of the clique. Note that when s = 1 this is simply the usual r-colour Ramsey
number. The study of set-colouring Ramsey numbers was initiated in the 1960s by Erdős,
Hajnal and Rado [5], who conjectured that Rr,r−1(k) ≤ 2δ(r)k for some function δ(r) → 0
as r → ∞. This conjecture was proved by Erdős and Szemerédi [6] in 1972, who showed
that

2Ω(k/r) ≤ Rr,r−1(k) ≤ rO(k/r).

For more general values of s, the first significant progress was made only recently, by
Conlon, Fox, He, Mubayi, Suk and Verstraëte [2], who showed that

exp

(
c′k(r − s)3

r2

)
≤ Rr,s(k) ≤ exp

(
ck(r − s)2

r
log

r

min{s, r − s}

)
(1)

for absolute constants c, c′ > 0. While the exponents in the lower and upper bounds differ
by only a factor of log r when r − s = Ω(r), they diverge much more significantly when
(r − s)/r → 0. We remark that the range s = r − o(r) was of particular interest to the
authors of [2], who were motivated by an application to hypergraph Ramsey numbers [3].

The main result of this paper is the following improved lower bound, which allows us
to determine Rr,s(k) up to a poly-logarithmic factor in the exponent for essentially all r,
s, k.

Theorem 1.2. There exist constants C > 0 and δ > 0 such that the following holds. If
r, s ∈ N with s ≤ r − C log r, then

Rr,s(k) ≥ exp

(
δk(r − s)2

r

)
(2)

for every k ≥ (C/ε) log r, where ε = (r − s)/r.

Note that the bound (2) matches the upper bound (1) on Rr,s(k), proved in [2], up to a
factor of O(log r) in the exponent for all s ≤ r−C log r. When s ≥ r−C log r our method
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does not provide a construction, but in this case the bounds from [2] only differ by a factor
of order (log r)2 in the exponent, the lower bound coming from a simple random colouring.

The lower bound on k in Theorem 1.2 is also not far from best possible, since if k ≤ 1/ε
then the most common colour has density at least 1 − 1/k, and therefore Rr,s(k) ≤ k2,
by Turán’s theorem. A simpler version of the construction described in this paper (taking
complete (k−1)-partite graphs instead of blow-ups of random graphs) extends Theorem 1.2
to a wider range of s and k, as stated in the following corollary. We omit its proof for
space reasons.

Corollary 1.3. Let r > s ≥ 1 and δ > 0, and set ε = (r−s)/r. We have Rr,s(k) = 2Θ̃(ε2rk)

for every k ≥ (1 + δ)/ε+ 1.

2 The construction
In this section we will define the (random) colouring that we use to prove Theorem 1.2,
and prove that it has the desired properties with high probability. The idea behind our
construction, to let each colour be a random copy of some pseudorandom graph, was intro-
duced in the groundbreaking work of Alon and Rödl [1] on multicolour Ramsey numbers,
and has been used in several recent papers in the area [7, 8, 10, 9]. However, our approach
differs from that used in these previous works in several important ways; in particular, we
will not count independent sets, and it will be important that our colour classes are chosen
(almost) independently at random.

Fix a sufficiently small1 constant δ > 0, and set C = 1/δ3. Recall that r − s = εr, and
let

m = 2δ
2εk and n = 2δ

4ε2rk.

Note that ε
√
m ≥ k, since k ≥ (C/ε) log r and ε ≥ 1/r, and by our choice of C.

Set p = 1− 5δε, and for each colour i ∈ [r], let

• Hi be an independently chosen copy of the random graph G(m, p), and

• φi : [n]→ [m] be an independently and uniformly chosen random function.

Now define Gi to be the (random) graph with vertex set [n] and edge set

E(Gi) =
{
uv : {φi(u), φi(v)} ∈ E(Hi)

}
,

that is, a random blow-up of Hi, with parts given by φi. Define a colouring χ′ of Kn by
χ′(e) =

{
i ∈ [r] : e ∈ E(Gi)

}
, and define the set of bad edges to be

B =
{
e ∈ E(Kn) : |χ′(e)| < s

}
. (3)

We will also say that an edge e = uv ∈ E(Kn) is i-crossing if φi(u) 6= φi(v), and define

κ(e) =
{
i ∈ [r] : e is i-crossing

}
.

We can now define the colouring that we will use to prove Theorem 1.2.
1In fact taking δ = 2−5 would suffice, but we will not make any attempt to optimise the value of δ.
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Definition 2.1. For each e ∈ E(Kn), we define the set of colours χ(e) ⊂ [r] by

χ(e) =

{
χ′(e) if e 6∈ B,
κ(e) if e ∈ B.

Our task is to show that with high probability |χ(e)| ≥ s for every e ∈ E(Kn), and
moreover that χ contains no monochromatic copy of Kk. We start with the former.

Lemma 2.2. With high probability, |χ(e)| ≥ s for every e ∈ E(Kn).

Proof. Note that for each i ∈ [r] we have Pr(i 6∈ κ(e)) = 1/m all independently, by the
definition of the functions φi. By the union bound over the set of r−s = εr missed colours,

Pr
(
|χ(e)| < s

)
≤ Pr

(
|κ(e)| < s

)
≤
(
r

εr

)(
1

m

)εr
≤
(
e

εm

)εr
≤ 2−δ

3ε2rk ≤ 1

n3

since k ≥ (C/ε) log r and C = δ−3 imply that εm ≥
√
m = 2δ

2εk/2. Applying Markov’s
inequality and taking an union bound over edges then proves the lemma.

To prove that χ contains no monochromatic copy of Kk, we split into two cases, the
easier case being the following. Let t = δεk2.

Lemma 2.3. With high probability, the colouring χ contains no monochromatic k-clique
with at most t bad edges.

Proof. Suppose χ contains a monochromatic clique S = {v1, . . . , vk} of colour i ∈ [r] such
that at most t of the edges e ∈

(
S
2

)
are bad. For each j ∈ [k], let wj = φi(vj) ∈ V (Hi), and

observe that the set W = {w1, . . . , wk} has size k, since by Definition 2.1, and noting that
χ′(e) ⊂ κ(e), every edge e ∈ E(Kn) such that i ∈ χ(e) is i-crossing.

Now, if e = vjv` ∈
(
S
2

)
is not a bad edge, then i ∈ χ(e) = χ′(e), and hence wjw` ∈ E(Hi).

Since there are at most t bad edges in
(
S
2

)
, it follows that e

(
Hi[W ]

)
≥
(
k
2

)
−t > p

(
k
2

)
+δεk2,

since p = 1−5δε and t = δεk2. Since Hi[W ] ∼ G(k, p), it follows from Chernoff’s inequality
that this event has probability at most e−δ2εk2 . By the union bound, the probability that
χ contains a monochromatic clique with at most t bad edges is at most

r

(
m

k

)
e−δ

2εk2 ≤ r
(
2δ

2εk · e−δ2εk
)k
.

Since δ3εk ≥ log r, the right-hand side tends to zero as k →∞, as required.

Our remaining task is to show that, with high probability, no graph F of the family

F =
{
F ⊂ Kn : v(F ) = k and e(F ) = t

}
is such that F ⊂ B.2 We will not be able to prove this using a simple first-moment
argument, summing over all graphs F ∈ F , since the probability of the event {F ⊂ B} is
not always sufficiently small. Instead, we will identify a ‘bottleneck event’ for each F ∈ F .

2Here, and below, we abuse notation slightly by treating the set of bad edges B as a graph.
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To do so, choose a total ordering ≺F on the vertices of F such that u ≺F v implies
dF (u) ≥ dF (v). In other words, we order the vertices according to their degrees in F ,
breaking ties arbitrarily. Now, define

Qi(F ) =
{
v ∈ V (F ) : ∃ u ∈ V (F ) with u ≺F v such that φi(u) = φi(v)

}
to be the set of vertices which share a part of φi with another vertex of F that comes earlier
in the order ≺F . We remark that if u ≺F v, then u 6= v. In the following two lemmas, we
will bound the probability in two different ways, depending on the size of

XF =
r∑
i=1

∑
v∈Qi(F )

dF (v).

Lemma 2.4. With high probability, there does not exist F ∈ F with XF ≤ εrt/2 and
F ⊂ B.

Proof. We first reveal the random functions φ1, . . . , φr, and therefore the sets Qi(F ) (and
hence also the random variable XF ) for each F ∈ F . To prove the lemma we will only use
the randomness in the choice of H1, . . . , Hr. More precisely, we will consider the set

Y =
{

(uv, i) ∈ E(F )× [r] : u, v 6∈ Qi(F )
}

of pairs (e, i) ∈ E(F )× [r] such that neither endpoint of e is contained in Qi(F ), and

Z =
∑

(e,i)∈Y

1
[
e 6∈ E(Gi)

]
,

the number of such pairs for which i 6∈ χ′(e). Note that, for each i ∈ [r], the graph
{e : (e, i) ∈ Y } is contained in a clique with at most one vertex in each part of φi. The events
{e ∈ E(Gi)} for (e, i) ∈ Y are therefore independent, and hence Z ∼ Bin(|Y |, 1−p). Since
|Y | ≤ rt, Z is dominated by a binomial random variable with expectation (1−p)rt = 5δεrt.

If F ⊂ B, then for each edge e ∈ E(F ), there are at least εr colours i ∈ [r] such that
e 6∈ E(Gi). Thus

r∑
i=1

∑
e∈E(F )

1
[
e 6∈ E(Gi)

]
≥ εrt.

Therefore, if XF ≤ εrt/2, then Z ≥ εrt/2, since for each vertex v ∈ Qi(F ) we remove
at most dF (v) edges from Y . By Chernoff’s inequality, it follows that for a fixed F ∈ F
we have Pr(XF ≤ εrt/2 and F ⊂ B) ≤ e−δεrt. Taking a union bound and recalling that
t = δεk2, it follows that the probability that there exists F ∈ F with XF ≤ εrt/2 and
F ⊂ B is at most (

n

k

)((k
2

)
t

)
e−δεrt ≤

(
en

k

( e
δε

)δεk
e−δ

2ε2rk

)k
→ 0,

as claimed, where in the final step we used our choice of n = 2δ
4ε2rk, the bound ε ≥ (log r)/r,

which holds by our assumption that s ≤ r − C log r, and our choice of C = 1/δ3.
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Finally, we will use the randomness in φ1, . . . , φr to show that XF is always small.

Lemma 2.5. With high probability, XF ≤ εrt/2 for every F ∈ F .

Proof. For each graph F ∈ F , and each j ∈
{

1, . . . , dlog2 ke
}
, define

Aj(F ) =
{
v ∈ V (F ) : 2−jk ≤ dF (v) < 2−j+1k

}
and sj(F ) =

r∑
i=1

|Aj(F ) ∩Qi(F )|.

Note that the random functions φ1, . . . , φr determine Q1(F ), . . . , Qr(F ), and hence sj(F ).
The key step is the following claim, which provides us with our bottleneck event.

Claim. If XF ≥ εrt/2, then there exists ` ∈
{

1, . . . , dlog2 ke
}

satisfying the inequality
s`(F ) > δεr

∑`
j=1 |Aj(F )|.

Proof of claim. Observe that

εrt

2
≤ XF =

r∑
i=1

∑
v∈Qi(F )

dF (v) ≤
r∑
i=1

dlog2 ke∑
j=1

k

2j−1
· |Aj(F ) ∩Qi(F )| =

dlog2 ke∑
j=1

k

2j−1
· sj(F ).

Thus, if the conclusion of the claim fails to hold for every ` ∈
{

1, . . . , dlog2 ke
}
then we

have

t

4δk
≤ 1

δεr

dlog2 ke∑
`=1

s`(F )

2`
≤
dlog2 ke∑
`=1

1

2`

∑̀
j=1

|Aj(F )|

=

dlog2 ke∑
j=1

|Aj(F )|
dlog2 ke∑
`=j

1

2`
≤
dlog2 ke∑
j=1

|Aj(F )|
2j−1

≤ 2

k

∑
v∈V (F )

dF (v) =
4t

k
.

Since δ < 2−4, this is a contradiction, and so the claim follows.

Fix ` ∈
{

1, . . . , dlog2 ke
}

such that the conclusion of the claim holds, and set A :=
∪`j=1Aj(F ) and a := |A|. Now, if we reveal φi for the vertices of F one vertex at a time
using the order ≺F , then for each vertex v ∈ Qi(F ) we must choose φi(v) to be one of the
(at most k) previously selected elements of [m]. The expected number of sets A such that
the conclusion of the claim holds is thus at most

k∑
a=1

na
(
ar

δεar

)(
k

m

)δεar
≤

k∑
a=1

(
n ·
(
e

δε
· k
m

)δεr)a
→ 0

as k →∞, as required, since n = 2δ
4ε2rk and εm/k ≥

√
m = 2δ

2εk/2.

Proof of Theorem 1.2. Combining Lemmas 2.2, 2.3, 2.4 and 2.5, we see that, with high
probability, the random colouring χ satisfies |χ(e)| ≥ s for every e ∈ E(Kn) and contains
no monochromatic Kk. Therefore Rr,s(k) > n = 2δ

4ε2rk, as desired.
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