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Abstract

The induced size-Ramsey number r̂kind(H) of a graph H is the smallest number
of edges a (host) graph G can have such that for any k-coloring of its edges, there
exists a monochromatic copy of H which is an induced subgraph of G. In 1995, in
their seminal paper, Haxell, Kohayakawa and Łuczak showed that for cycles, these
numbers are linear for any constant number of colours, i.e., r̂kind(Cn) ≤ Cn for some
C = C(k). The constant C comes from the use of the regularity lemma, and has a
tower type dependence on k. In this paper we significantly improve these bounds,
showing that r̂kind(Cn) ≤ O(k102)n when n is even, thus obtaining only a polynomial
dependence of C on k. We also prove r̂kind(Cn) ≤ eO(k log k)n for odd n, which almost
matches the lower bound of eΩ(k)n. Finally, we show that the ordinary (non-induced)
size-Ramsey number satisfies r̂k(Cn) = eO(k)n for odd n. This substantially improves
the best previous result of eO(k2)n, and is best possible, up to the implied constant
in the exponent. To achieve our results, we present a new host graph construction
which, roughly speaking, reduces our task to finding a cycle of approximate given
length in a graph with local sparsity.
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1 Introduction
The Ramsey number rk(H) of a graph is the smallest integer n such that every k-coloring
of the edges of Kn contains a monochromatic copy of H. The notion of Ramsey numbers
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is one of the most central notions in combinatorics and it has been studied extensively
since Ramsey [23] showed their existence for every graph H. Motivated by this definition,
we say that a graph G is k-Ramsey for a graph H if any k-coloring of the edges of (the
host graph) G, contains a monochromatic copy of H, and we write G

k−→ H. Using this
notation, we have that rk(H) = min{|V (G)| : G k−→ H}.

The notion of Ramsey numbers is measuring the minimality of the host graph in terms
of the number of vertices. Are there graphs G with significantly fewer edges than the
clique on rk(H) vertices that are k-Ramsey for H? This general question is captured by
the notion of size-Ramsey numbers introduced in 1978 by Erdős, Faudree, Rousseau and
Schelp [11]. The size-Ramsey number of a graph H is defined as r̂k = min{E(G)|G k−→ H}.
In the last few decades, there has been extensive research on this notion, see, e.g., [3].

One of the main goals is to understand which classes of graphs have size-Ramsey num-
bers which are linear in their number of edges. Beck [2] showed that this is true for paths,
which was later extended to all bounded-degree trees by Friedman and Pippenger [14].
It is also known that logarithmic subdivisions of bounded degree graphs have linear size-
Ramsey numbers [6], as well as bounded degree graphs with bounded treewidth [18]. Given
all of the mentioned results, it might be tempting to assume that all graphs of bounded
degree have linear size-Ramsey numbers. In an elegant paper of Rödl and Szemerédi [25],
it was shown that this is not the case. Indeed, they showed that there exist n-vertex cubic
graphs which have size-Ramsey numbers at least n logc n, for a small constant c > 0. This
bound has only very recently been improved to cnec

√
logn for some c > 0 by Tikhomirov

[26]. For more results see [7] and references therein.
A related studied notion is that of induced size-Ramsey numbers. Given a graph H, the

induced size-Ramsey number r̂kind(H) is the smallest number of edges a graph G can have
such that any k-coloring of G contains a monochromatic copy of H which is an induced
subgraph of G. The existence of these numbers is an important generalisation of Ramsey’s
theorem, proved independently by Deuber [4], Erdős, Hajnal, and Pósa [12], and Rödl [24].
Naturally, this concept is much harder to understand for most classes of target graphs H
and much less precise bounds are known than for the (non-induced) size-Ramsey number.

Indeed, already for bounded degree trees we know that the size-Ramsey number is linear
in their number of vertices, whereas for its induced counterpart we have no good bounds
while we have every reason to believe that the answer should also be linear. Further, the
best general upper bound on r̂2

ind(H) for n-vertex graphs H is obtained by Conlon, Fox and
Sudakov [19], and is of the order 2O(n logn), while Erdős [10] conjectured that r̂2

ind(H) ≤ 2cn.
In comparison, the bound for Ramsey numbers (and hence also for size-Ramsey numbers)
is known to be exponential in the number of vertices of the target graph. Further, it is
known that the size-Ramsey number of n-vertex graphs with degree bounded by a constant
d, is between neΩ(

√
logn) and O(n2− 1

d
+ε), proven by Tikhomirov [26], and by Kohayakawa,

Rödl, Schacht, and Szemerédi [20], respectively. On the other hand, the best upper bound
on the induced size-Ramsey number of these graphs, proved by Fox and Sudakov [13] is
of the order nO(d log d), while the best lower bound is still the bound for the (non-induced)
Ramsey number of those graphs, which is often the state of the art for such questions.
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For paths it is known that Ω(k2)n ≤ r̂k(Pn) ≤ O(k2 log k)n (see [9, 21] for the lower
bound and [22, 8] for the upper bound). In the induced case, by a recent result of Draganić,
Krivelevich and Glock [5], we have that r̂kind(Pn) ≤ O(k3 log4 k)n. For cycles, the discrep-
ancy between the size-Ramsey and the induced size-Ramsey number is significantly larger.
Indeed, by a recent result of Javadi and Miralaei [17], which improved another recent re-
sult by Javadi, Khoeini, Omidi and Pokrovskiy [16], we have r̂k(Cn) = O(k120 log2 k)n for
even n, and r̂k(Cn) = O(216k2+2 log k)n for odd n. On the other hand, the only known
upper bound on the induced size-Ramsey numbers of cycles was obtained in the seminal
paper of Haxell, Kohayakawa and Łuczak [15]. Their proof uses a technically very involved
argument relying on the use of the Sparse Regularity lemma and therefore shows that
r̂kind(Cn) ≤ Cn where C = C(k) has a tower type dependence on k.

In this paper, we prove the following theorem which quite significantly improves the
tower-type bounds of Haxell, Kohayakawa and Łuczak.

Theorem 1.1. For any integer k ≥ 1, there exists n0(k) such that for all n ≥ n0(k), the
following holds.

a) If n is even, then r̂kind(Cn) = O(k102)n.

b) If n is odd, then r̂kind(Cn) = eO(k log k)n.

While the focus of this paper is on induced size-Ramsey numbers of cycles, our method
can be also used to substantially improve the upper bound for the non-induced case as
well. Our next result gives an essentially tight estimate for the size-Ramsey numbers of
odd cycles.

Theorem 1.2. For any integer k ≥ 1, there exists n0(k) such that for all n ≥ n0(k), we
have r̂k(Cn) = eO(k)n.

The best known lower bound for size-Ramsey numbers of even cycles comes from the
bound for paths, which is of the order Ω(k2)n [9, 22]. In the odd case, there is a simple
construction of a coloring which gives a lower bound of 2k−1n (see [17]), showing that the
second result in Theorem 1.1 is tight up to an O(log k) factor in the exponent, while the
bound in Theorem 1.2 is tight up to a constant factor in the exponent.

We remark that, as in [15], our proofs can easily be adapted to provide monochromatic
induced cycles of all (even) lengths between C log n and n for some constant C depending
only on k. We also note that our bound on the size-Ramsey number of even cycles r̂k(Cn) ≤
r̂kind(Cn) = O(k102)n can be further improved significantly, using the same methods, but
we chose not to present that here.

2 Proof outline
The main idea behind our proof is the following: consider a binomial random graph G ∼
G(N,C/N), where N = C ′n and C,C ′ are appropriately chosen large constants. Let G be
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adversarially k-edge-colored. Then, it is easier to find an induced monochromatic cycle of
length in [0.9n, 1.1n], say, then of length precisely n. Our host graph is constructed to take
advantage of this.

In the rest of the outline we focus on the proof of the induced odd case (Theorem 1.1 b))
and at the end we outline the changes needed for the other two statements.

Given k, we find a fixed “gadget” graph F = F (k) which is k-induced-Ramsey for a
5-cycle. We denote s = v(F ). We construct an s-uniform N -vertex hypergraph H by
taking CN random hyperedges. We clean H so it does not have any short Berge cycles so,
in particular, it is linear. Then we construct our host graph Γ by placing an isomorphic
copy of F inside every hyperedge of H. By definition, inside every copy of F , there is a
monochromatic induced copy of C5. The main object we work with will be an auxiliary
k-edge-coloured graph G on the same vertex set as Γ. For each placed copy of F in Γ, in
G we put an edge between a single pair of vertices which are at distance 2 in one of the
induced monochromatic copies of C5 in the copy of F , and colour this edge with the colour
of that cycle.

Now, suppose we find a monochromatic, say red, cycle Q of length ` ∈ [n/3, n/2] in G.
By definition, each edge of Q corresponds to an induced 5-cycle in Γ, where the endpoints
of the edge are at distance 2 in the cycle. For each of these 5-cycles, we can choose either
a path of length 2 or a path of length 3 in G to obtain a red cycle Q′ of length exactly n
in Γ (see Figure 1). The main technical difficulty is in obtaining certain properties of Q
such that the resulting cycle Q′ is induced in Γ.

More precisely, the following will be sufficient. Recall that every edge e ∈ E(G) comes
from a hyperedge in H which we denote by h(e). Suppose Q is a cycle in G with edges
e1, . . . , e` such that no hyperedge apart from h(e1), . . . , h(e`) in H intersects

⋃
i∈[`] h(ei) in

more than one vertex. Further, suppose that each h(ei) only intersects h(ei−1) and h(ei+1)
among the mentioned hyperedges. Then, it is not difficult to see that the cycle Q′ obtained
as above is induced in Γ. We will call such a cycle Q good.

Let us now explain how to find an induced monochromatic cycle of length between n/2
and n/3 in a k-edge-colored graph G ∼ G(N,C/N) with N = C ′n for some large constants
C,C ′. Our real task is more involved as we require a stronger condition on the found cycle
as discussed above, since we are not working with a binomial random graph. However,
most of the ideas can be described through the lens of this simpler problem.

We now sketch how to find a monochromatic induced cycle of length between n/2
and n/3 in G ∼ G(N,C/N). The proof strategy is illustrated in Figure 2. By standard
results, it is not difficult to clean G without losing many edges, so that it has no cycles
of length O(1). Further, we also know that it is locally sparse, that is, all sets U of size
|U | ≤ εN span at most 3

2
|U | edges, where ε > 0 is some constant depending on C. We

consider the subgraph corresponding to the densest colour class, say red and using a result
of Krivelevich [21], we find inside it a large expanding subgraph G′. Draganić, Glock and
Krivelevich [5] showed using a modified DFS algorithm that under the given assumptions,
G′ has a red induced path P of length 2n/5 and we adapt their argument to our setting.
Given such a red induced path of length 2n/5, from the endpoints we construct two trees
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T1, T2 each of depth O(logN) and with Ω(εN) leaves. Moreover, we do it in such a way
that any path containing the initial endpoints is good, i.e. if there is a red edge connecting
two vertices in different trees, it closes a good cycle in G′. Let W = V (P )∪V (T1)∪V (T2)
and remove from it a large constant number of the last layers in T1 and T2, so that the
resulting W is small enough compared to the leaf sets of T1 and T2. Denote by R1 and R2

the vertices in the deleted layers in T1 and T2, respectively. Finally, using the expanding
properties of G′, we may expand from the sets R1 and R2, while avoiding vertices which
are incident to W until the two balls around R1 and R2 of large enough constant diameter
intersect, and thus we close a cycle of desired length. Using the girth assumption on our
graph it is not difficult to show that this cycle is induced.

Let us now comment on the differences in the proofs for the three different statements.
In the odd induced case, we can take F to be Alon’s [1] celebrated construction of a dense
pseudorandom triangle-free graph on eΘ(k log k) vertices. We will prove that, every k-edge-
colouring of that graph will contain an induced monochromatic C5. However, when n is
even, we can instead take F to be k-induced-Ramsey for a 6-cycle with only O(k6) vertices
by taking a sufficiently dense bipartite C4-free graph. Again, in each copy of F, we find
a monochromatic induced 6-cycle and connect two vertices at distance 2 on the cycle to
form our auxiliary graph. The same argument as above shows that given a monochromatic
cycle of length ` in the auxiliary graph G, we can find a monochromatic cycle of any even
length between 2` and 4` in Γ. Finally, for the odd non-induced case, we can take F to be
the complete graph on 2k + 1 vertices. It is easy to see that any k-edge coloring of that
graph has a monochromatic odd cycle. For simplicity, we take the most common length
L among those cycles, and for each of these L-cycles, we connect two vertices at distance
(L− 1)/2 on the cycle to form the auxiliary graph. Then, a monochromatic good cycle of
length between 2n/(L− 1) and 2n/(L + 1) in the auxiliary graph yields a monochromatic
cycle of length n in our host graph. This required extra precision in the length of the good
cycle in the auxiliary graph will only cost us a factor of 2O(k) in the number of copies of F
we use in our construction.

Figure 1: Transforming an 8-cycle in the auxiliary graph (thick red edges) into a 21-cycle
in the original graph by using 5 paths of length 3 and 3 paths of length 2.



Effective bounds for induced size-Ramsey numbers of cycles 198

R1 R2

nΘ(log n)

O(1)

Θ(log n)

O(1)

O(1)

Figure 2: Building an induced cycle
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