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Abstract

We show that the strict Erdős-Ko-Rado property holds for sequentially Cohen-
Macaulay near-cones. In particular, this implies that chordal graphs with at least one
isolated vertex satisfy the strict Erdős-Ko-Rado property.
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1 Introduction
What is the largest cardinality of a family of pairwise-intersecting sets? A now-classic
result of Erdős, Ko, and Rado answers this question if the sets all have the same number
of elements, and are otherwise unrestricted.

Theorem 1.1 (Erdős, Ko, and Rado [4]). Let r ≤ n/2. If F is a family of pairwise-
intersecting subsets of [n], each with r elements, then |F| ≤

(
n−1
r−1

)
.

If |F| achieves the upper bound and r < n/2, then F consists of all the r-element
subsets containing some fixed element.
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That is, under the above hypotheses a family of pairwise-intersecting objects of maximal
size is given by a family with a common intersection. Moreover, under slightly stronger
hypotheses, this is the only such family. Hilton and Milner [8] later gave upper bounds for
pairwise-intersecting families that do not all contain a common element.

There are a large number of generalizations of Theorem 1.1. We focus on one in
particular. Holroyd and Johnson asked at the 1997 British Combinatorial Conference [13]
about whether an analogue of Erdős-Ko-Rado property holds for independent sets in cyclic
and similar graphs. Talbot showed the answer to be “yes” in a strong sense.

Theorem 1.2 (Talbot [22]). Let n, k, r be positive integers such that r ≤ n/(k+1). Let G be
the graph with vertex set Zn and edges consisting of those x, y such that x−y ∈ {1, . . . , k}.

If F is a family of pairwise-intersecting independent sets of G, each with r elements,
then |F| is smaller than the family B of all independent sets with r elements containing 0.
If |F| achieves the upper bound and n 6= 2r + 2, then F is B up to relabeling the vertices.

Holroyd and Talbot asked whether similar results hold for independent sets in other
graphs G. There are counterexamples for r around the size of a maximum independent
set, but not for somewhat smaller r. Since the collection of independent sets form a
simplicial complex, and since it is our main object of study, we introduce it now. A
simplicial complex K with vertex set V is a set system K ⊆ 2V that is closed under taking
susbset, i.e., if F ∈ K and G ⊆ F then G ∈ K. In this article we will assume that
the vertex set V is equipped with a total order and consequently we can identify it with
[|V |] = {1, . . . , |V |} respecting this order. The members of K are called faces, the faces of
size r are called r-faces, the number of r-faces in K is denoted by fr(K) and the maximal
faces with respect to inclusion are called facets. The dimension of a face F is defined by
dim(F ) = |F | − 1 and the dimension of K by dim(K) = maxF∈K dim(F ). The r-skeleton
of K, denote by K(r), is the set of faces from K of dimension at most r. The pure r-
skeleton of K is the simplicial complex given by all the faces from K of dimension r and
their subsets. Given a face F ∈ K, the link of F in K is defined as the simplicial complex
lk(F,K) = {G ∈ K : G∩F = ∅ and F ∪G ∈ K}. By K[S] = {F ∈ K : F ⊆ S} we denote
the induced simplicial complex on the vertices S. For two simplicial complexes K and L,
the join is defined by K ∗ L = {F tG : F ∈ K,G ∈ L}, where t denotes disjoint union.

Conjecture 1.3 (Holroyd and Talbot [10], extended by Borg to arbitrary simplicial com-
plexes [1]). Let K be a simplicial complex whose smallest facet has d vertices, and let
r ≤ d/2. If F is a family of pairwise-intersecting faces of K, each with r elements, then
there is some vertex v of K so that |F| ≤ fr−1(lk(v,K)). If r < d/2 and |F| achieves the
upper bound, then F consists of the faces containing some vertex v.

If a simplicial complex K satisfies the upper bound of Conjecture 1.3 at a specified
value of r, then we say that K is r-EKR. If every intersecting family of maximum size has
a common intersection, then we say that K is strictly r-EKR. We abuse terminology to
say that a graph is (strictly) r-EKR if its independence complex has the same property.

There has been considerable work on Conjecture 1.3. Hurlbert and Kamat showed [11]
that any chordal graph with an isolated vertex satisfies the upper bound of Conjecture 1.3.
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Borg showed [1] that the conjecture holds asymptotically, in the precise sense that if the
minimal facet cardinality of a simplicial complex K is at least (r − 1)

(
3r−3
2

)
+ r, then K

satisfies r-EKR. Other related works are [10, 9, 19]. Rather than working with arbitrary
simplicial complexes we will focus on the so called sequentially Cohen-Macaulay near-cones
which we introduce now. A simplicial complex K is a near-cone with apex v if for every
F ∈ K and every w ∈ F we have that F \ {w} ∪ {v} ∈ K. A simplicial complex is called
Cohen-Macaulay over F if for every face F ∈ K we have that H̃i(lk(F,K),F) = 0 for
i < dim(lk(F,K)), that is the reduced homology of every link vanishes on every dimension
except possibly the top one. A simplicial complex is said to be sequentially Cohen-Macaulay
over F if for every r, the pure r-skeleton of K is Cohen-Macaulay over F. From now on
we will assume that the field has characteristic 0 and drop it from the notation. The
second author showed more generally [25] that any sequentially Cohen-Macaulay near-
cone satisfies the upper bound of Conjecture 1.3. We note here that the independence
complex of a graph G is a cone if and only if G has an isolated vertex. Moreover, the class
of sequentially Cohen-Macaulay simplicial complexes is a broad class that includes the
independence complexes of chordal graphs and many others [2, 17, 24]. Neither Hurlbert
and Kamat nor the second author addressed the strict r-EKR property.

The main purpose of the current paper is to fill in this gap. We show:

Theorem 1.4. Let 2 ≤ r < d/2. If the simplicial complex K is a sequentially Cohen-
Macaulay near-cone with minimal facet cardinality d, then K is strictly r-EKR, that is
the pairwise-intersecting families of maximum size consist of all r-faces containing an apex
vertex.

The novelty of our techniques is to combine algebraic and combinatorial shifting oper-
ations. We also make use of some of the ideas behind proofs of the Hilton-Milner theo-
rem [7, 12].

This article is organized as follows, in Section 2 we review the main results needed for
the proof. In Section 3 we give the proof of Theorem 1.4.

2 Shifting

A set system F ⊆
(
[n]
r

)
is said to be shifted if for every F ∈ F and i, j ∈ [n] such that

i < j, j ∈ F and i /∈ F we have that F \ {j} ∪ {i} ∈ F . In this section we review two
operations that assign to a set system another set system that is shifted while preserving
several properties of interest.

Given a set system F ⊆
(
[n]
r

)
, and F ∈ F . Let i, j ∈ [n] such that i < j, the

combinatorial shift Shifti,j is defined by

Shifti,j(F ) =

{
F \ {j} ∪ {i} if j ∈ F, i /∈ F and F \ {j} ∪ {i} /∈ F ,
F otherwise.

Shifti,j(F) = {Shifti,j(F ) : F ∈ F}.
We will be using the following properties of combinatorial shifting [6].
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Theorem 2.1. Let F ⊆
(
[n]
r

)
and i, j ∈ [n] such that i < j.

1. | Shifti,j(F)| = |F|.

2. If G ⊆ F , then Shifti,j(G) ⊆ Shifti,j(F) where in each case we do the combinatorial
shifting according to the respective family.

3. If F is shifted, then Shifti,j(F) = F .

4. If F is pairwise-intersecting, then Shifti,j(F) is pairwise-intersecting.

By iterating the combinatorial shifting operation we will eventually obtain a set system
that is shifted, but the final set system is dependent on the order of the shifts.

Kalai [15] introduced a shifting operation that produces a shifted set system preserving
several algebraic properties, so-called (exterior) algebraic shifting. This operation assigns
to a simplicial complex K a shifted simplicial complex ∆(K). We would like to point out
that in contrast to combinatorial shifting, algebraic shifting works in one step rather than
an iterative procedure. Here we merely state the properties we will be using.

Theorem 2.2. Let K be a simplicial complex.

1. [15, Theorem 2.1.2] ∆(K) is shifted.

2. [15, Theorem 2.2.7] K ⊆ L, then ∆(K) ⊆ ∆(L).

3. [15, Theorem 2.1.1] fr(K) = fr(∆(K)).

4. [15, Theorem 4.1] K is Cohen-Macaulay then ∆(K) is Cohen-Macaulay.

5. [15, Theorem 6.2] If F ⊆
(
[n]
a

)
and G ⊆

(
[n]
b

)
are cross-intersecting, then ∆(F) and

∆(G) are cross-intersecting.

6. [18, Theorem 5.3] If K is a near-cone with apex v, then ∆(K) = (1∗∆(lk(v,K)))∪B
where B = {F ∈ ∆(K) : 1 /∈ F}. In particular, fr(lk(1,∆(K))) = fr(∆(lk(v,K))) =
fr(lk(v,K)).

Since the minimal facet cardinality plays a key role in Conjecture 1.3. We need to
be able to control its behavior when performing (algebraic) shifting operations. For this
purpose we introduce the following definition of depth of a simplicial complex K

depthK = max{d : K(d) is Cohen-Macaulay}.

The depth of a simplicial complex is one less than the depth of its Stanley-Reisner ring [21].

Corollary 2.3 ([3]). The minimum facet dimension of ∆(K) is at least d if and only if
K(d) is Cohen-Macaulay over F.

From the above corollary it follows that depthK + 1 is the minimum facet cardinality
of ∆(K) which is at most the minimal facet cardinality of K. Notice that when K is
sequentially Cohen-Macaulay, the minimal facet cardinality ofK coincides with depthK+1
and consequently with the minimal facet cardinality of its algebraic shift ∆(K).
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3 Proof of Theorem 1.4
First, we adapt the approach in [7, 12] for shifted simplicial complexes. For {i, j} ∈

(
[n]
2

)
,

let swapi,j denote the function exchanging vertices i and j.

Lemma 3.1. Let K be a shifted simplicial complex with minimal facet cardinality d and
F ⊆ K a non-trivial pairwise-intersecting family of r-faces with r ≤ d/2 of maximal size.
Then, there exists a shifted non-trivial pairwise-intersecting family F ′ ⊆ K of r-faces such
that |F| = |F ′|.

Proof. Consider F of maximal size. We apply Shifti,j repeatedly to F until it results in
a trivial pairwise-intersecting family. Let Shifts,t be the first shifting operation making
the family trivial and let H be the non-trivial family before applying the last shifting
Shifts,t. Because K is shifted, the repeated application of combinatorial shifting to the
pairwise-intersecting family keeps the family in the simplicial complex at each step. That
is, Shifti,j(F) ⊆ Shifti,j(K) = K, where the first inclusion follows from Theorem 2.1.2 and
the last step from Theorem 2.1.3.

If Shift1,s(H) is non-trivial and Shift2,t ◦ Shift1,s(H) is non-trivial then applying Shift1,2
to this last family gives a trivial one and we are in the same situation as [7, Proposition
1.6], that is s = 1 and t = 2. If Shift1,s(H) is trivial while Shift2,s(H) is non-trivial, then
Shift1,2 ◦ Shift2,s(H) is trivial and we are again in the same situation as above. The remain-
ing case is when we have that Shift1,s(H) and Shift2,s(H) (or Shift1,t(H) and Shift2,t(H))
are both trivial. We will use repeatedly the following argument: if F is non-trivial pairwise-
intersecting family of maximal size, and Shifti,j(F) is trivial then {i, j} ∩ F 6= ∅ for all
F ∈ F and, because of maximality of |F|, we have that

Ti,j = {T ∪ {i, j} : T ∈ lk({i, j}, K), |T | = r − 2} ⊆ F .

Let 3 ≤ s0 < s such that H′ = Shifts0,s(H) is non-trivial, we take the first one if it
exists, or we set s0 = s otherwise. We notice that s0 ≤ r+1, since otherwise every member
of H would contain [r+ 1] or s, since the first option is not possible due to its size then H′
is trivial, which is a contradiction. Since Shifti,s0(H′) is trivial for all i ∈ [s0 − 1] while H′
is not, a routine computation shows that the following holds: Ti,s0 ⊆ H′ for i ∈ [s0− 1]; for
each F ∈ H′ we have that [s0 − 1] ⊆ F or s0 ∈ F ; for each i ∈ [s0 − 1] there exist Fi ∈ H′
such that i /∈ Fi and s0 ∈ Fi; there exist F0 such that [s0 − 1] ⊆ F0 and s0 /∈ F0. Finally,
set G = swap1,s0(H

′) and Gi = swap1,s0(Fi), then 1 /∈ G0 and s0 /∈ G1.
Claim 1: G is intersecting. The only non-trivial case to verify is if F, F ′ ∈ H′ are

such that F ∩ [s0] = [s0 − 1] and F ′ ∩ [s0] = s0. Since H′ is intersecting, there exists
x ∈ F ∩ F ′. Then, x /∈ [s0] and consequently it is not affected by swap1,s0 . From this we
can conclude that x ∈ swap1,s0(F )

⋂
swap1,s0(F

′).
Claim 2: G is non-trivial. If x ∈

⋂
G, then since

⋂
H′ = ∅ we must have that x = 1

or x = s0. But, 1 /∈ G0 and s0 /∈ G1.
Claim 3: G ⊆ K. For F ∈ H′ such that s0 ∈ F and 1 /∈ F , swap1,s0(F ) ∈ K since K

is shifted. For F ∈ H′ such that 1 ∈ F and s0 /∈ F consider F ′ given by adding the first r
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vertices of [n] \ F to F , this is a face since the minimal facet cardinality is d ≥ 2r and it
contains s0 since s0 ≤ r + 1. Consequently swap1,s0(F ) ∈ K.

Claim 4: T1,2 ⊆ G. Since s0 ≥ 3, for i ∈ [s0 − 1] we have that Ti,s0 ⊆ H′ and
consequently T1,i = swap1,s0(Ti,s0) ⊆ swap1,s0(H

′) = G.
Next, we apply repeatedly Shifti,j with 3 ≤ i < j ≤ n to G until it is stable under this

restricted set of combinatorial shiftings. We notice that this does not change T1,2. Denote
the stable set by G ′.

Claim 5: G ′ is non-trivial. Since [s0 − 1] \ {1} ⊆ G0 ∈ G, then [r + 1] \ {1} =
[s0] \ 1 ∪ {s0 + 1, . . . , r + 1} ∈ G ′. On the other hand, since T1,2 ⊆ G ′ we have that
[r + 1] \ i ∈ G ′ for i ∈ {3, . . . , r + 1}. Because 1 ∈ G2 ∈ G while 2 /∈ G2, we also have that
[r + 1] \ {2} ∈ G ′. That is,

(
[r+1]
r

)
⊆ G ′.

Consequently applying Shifti,j for 1 ≤ i < j ≤ n to G ′ does not create a trivial family.
Finally, we apply Shifti,j for 1 ≤ i < j ≤ n repeatedly to G ′ until it is stable and denote
the resulting family by F ′.

We will need the following technical lemma.

Lemma 3.2 ( [7, 12]). Let F be an pairwise-intersecting shifted family. For every F ∈ F
there exists l ≥ 1 such that |F ∩ [2l − 1]| ≥ l. Moreover, the maximum such l = l(F )
satisfies |F ∩ [2l(F )]| = l(F ).

The following function was previously defined in [7] in the unrestricted context. We
extend it to the setting of simplicial complexes. Let K be a shifted simplicial complex with
vertex set [n] and F ⊆ K a shifted pairwise-intersecting family of r-faces, set

α : F → (st(1, K) \ st(1, K[[n] \ [2, r + 1]])) ∪ {2, . . . , r + 1}

given by

α(F ) =

{
F if 1 ∈ F or [2, r + 1] ⊆ F,

F∆[2l(F )] otherwise.

The following lemma shows that α is well defined and injective.

Lemma 3.3. For F ∈ F such that α(F ) 6= F we have that: (1) 1 ∈ α(F ). (2) α(F ) /∈ F .
(3) α(F ) ∩ [2, r + 1] 6= ∅. (4) α is injective. (5) α(F ) ∈ K.

Proof. Properties (1-4) were proved previously [7], we only need to verify property (5).
Notice that d/2 ≥ r ≥ |F ∩ [2l(F )]| = l(F ). In particular, |F ∪ [2l(F )]| = |F |+ |[2l(F )]| −
|F ∩ [2l(F )]| ≤ 2r ≤ d. Because K is shifted with minimal facet cardinality d we have that
F∪[2l(F )] ∈ K since it is the smallest face, with respect to the partial order, of size r+l(F )
containing F . Since α(F ) = F∆[2l(F )] ⊆ F ∪ [2l(F )] we conclude that α(F ) ∈ K.

Proposition 3.4. Let K be a shifted simplicial complex with vertex set [n] and minimal
facet cardinality d and r ≤ d/2. Let F ⊆ K be a non-trivial intersecting family of r-faces.
We have that

|F| ≤ fr−1(lk(1, K))− fr−1(lk(1, K[[n] \ [2, r + 1]])) + 1.



Strict Erdős-Ko-Rado for simplicial complexes 251

Moreover, if 2 ≤ r < d/2 then |F| < fr−1(lk(1, K)).

Proof. By Lemma 3.1 we can assume that F is shifted. The first part follows from the
injectivity of α. For the second part, because 2r+1 ≤ d we have that {1, r+2, . . . , 2r+1}\
{i} ⊆ [d]\ [2, r+1] ∈ K for i ∈ [r+2, 2r+1]. Consequently fr−1(lk(1, K[[n]\ [2, r+1]])) ≥
r ≥ 2 and the conclusion follows.

Remark 3.5. It is not hard to show that if K be a near-cone with apex v and minimal facet
cardinality d, then for r ≤ d/2 we have that K(r) ⊆ v ∗ lk(v,K).

Theorem 3.6. Let K be a near-cone with apex v, then K is strict r-EKR for r < depthF K+1
2

.

Proof. Let F be a non-trivial intersecting family of r-faces. Since depthFK ≤ d then
r < d/2. By above remark we can conclude that F ⊆ v∗lk(v,K). Set F(v) = {F \{v} : F ∈
F , v ∈ F} and F(v̄) = {F : F ∈ F , v /∈ F}. Then F(v),F(v̄) ⊆ lk(v,K) are cross-
intersecting and F(v̄) is pairwise-intersecting. By Theorem 2.2.2 and Theorem 2.2.5 we
have that ∆(F(v)),∆(F(v̄)) ⊆ ∆(lk(v,K)) are cross-intersecting and ∆(F(v̄)) is pairwise-
intersecting. Consequently the family F ′ = {{1} ∪ F : F ∈ ∆F(v)} ∪ ∆(F(v̄)) ⊆ 1 ∗
∆(lk(v,K)) is non-trivial and intersecting. By Theorem 2.2.6, ∆(K) = (1∗∆(lk(v,K)))∪B
where B = {F ∈ ∆(K) : 1 /∈ F}, consequently F ′ ⊆ ∆(K) and non-trivial. Moreover, since
no member of ∆(F(v̄)) contains vertex 1 we have that

|F ′| = |∆(F(v))|+ |∆(F(v̄))| = |F(v)|+ |F(v̄)| = |F|

where we have used Theorem 2.2.3. Since K is shifted, by Theorem 2.2.1, with min-
imal facet cardinality depthFK + 1, by Proposition 3.4, we can conclude that |F| <
fr−1(lk(1,∆K)) = fr−1(lk(v,K)) by Theorem 2.2.6.

As a corrolary we obtain Theorem 1.4.
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