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Abstract

The score sequence of a tournament is the sequence of the out-degrees of its ver-
tices arranged in nondecreasing order. The problem of counting score sequences of a
tournament with n vertices is more than 100 years old (MacMahon 1920). In 2013
Hanna conjectured a surprising and elegant recursion for these numbers. We settle
this conjecture in the affirmative by showing that it is a corollary to our main the-
orem, which is a factorization of the generating function for score sequences with a
distinguished index. We also derive a closed formula and a quadratic time algorithm
for counting score sequences.
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1 Introduction
This extended abstract summarises the results of our paper [4]. In 1953 Landau [9] used
oriented complete graphs—also called tournaments—to model pecking orders. If the ver-
tices of the complete graph represent players (rather than chickens), then the initial vertex
of a directed edge signifies the winner of a game between the two end-point players. The
number of wins of a player is equal to the number of outgoing edges from that vertex.
A score sequence is a sequence of these number of wins given in a nondecreasing order.
For instance, with 3 players there are two possible score sequences, namely (0, 1, 2) and
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(1, 1, 1). Note that non-isomorphic tournaments may give rise to the same score sequence.
With 5 players there are, up to isomorphism, 12 tournaments but only 9 score sequences.
To be even more specific, here are two non-isomorphic tournaments:

a

b

c d

e

a

b

c d

e

The score sequence associated with both is (1, 1, 2, 3, 3). The following characterization of
score sequences is known as Landau’s theorem.

Theorem 1 (Landau [9]). A sequence of integers s = (s0, . . . , sn−1) is a score sequence if
and only if

(1) 0 ≤ s0 ≤ s1 ≤ · · · ≤ sn−1 ≤ n− 1,

(2) s0 + · · ·+ sk−1 ≥
(
k
2

)
for 1 ≤ k < n, and

(3) s0 + · · ·+ sn−1 =
(
n
2

)
.

Let Sn be the set of score sequences of length n. There is no known closed formula for
the associated cardinalities (A000571 in the OEIS [7])(

|Sn|
)
n≥0 = (1, 1, 1, 2, 4, 9, 22, 59, 167, 490, 1486, 4639, 14805, . . . )

or their generating function.
It should be noted that Landau was not the first person to study score sequences, or

attempt to count them. MacMahon [10] used symmetric functions and hand calculations
to determine |Sn| for n ≤ 9 in 1920. Building on Landau’s work, Narayana and Bent [11],
in 1964, derived a multivariate recursive formula for determining |Sn|. They used it to give
a table for n ≤ 36. In 1968 Riordan [12] gave a simpler and more efficient recursion, but
unfortunately it turned out to be incorrect [13].

Let [a, b] denote the interval of integers {a, a+1, . . . , b}. We may view a score sequence
s ∈ Sn as an endofunction s : [0, n − 1] → [0, n − 1]. We now introduce the notion of a
pointed score sequence. Define S r

n as the Cartesian product S r
n = Sn × [0, n − 1]. We call

the members of S r
n pointed score sequences ; e.g. there are 6 pointed score sequences in S r

3:

((0, 1, 2), 0), ((0, 1, 2), 1), ((0, 1, 2), 2),

((1, 1, 1), 0), ((1, 1, 1), 1), ((1, 1, 1), 2).

Let (s, i) ∈ S r
n. Depending on the context, the element i will be interpreted as a position

(element in the domain) or a value (element in the codomain) of s. If i is a value, then
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the cardinality of the fiber s−1(i) is the number of times i occurs in s; this number may be
zero. Let

S
r
n(t) =

∑
(s,i)∈S r

n

t|s
−1(i)|

be the polynomial recording the distribution of the statistic (s, i) 7→ |s−1(i)| on S r
n. As an

example, S r
3(t) = 2 + 3t+ t3. Let

S
r
(x, t) =

∑
n≥1

S
r
n(t)xn.

To present the bijection that is the main result of this paper, we will first introduce a
particular type of multiset that is an essential ingredient in our deconstruction of a pointed
score sequence. At first glance it is not obvious what the relevance of these multisets to
score sequences is.

We define EGZn as the set of multisets of size n with elements in the cyclic group Zn
whose sum is

(
n
2

)
modulo n. To understand what the elements of EGZn look like it may

be helpful to note that
(
n
2

)
, as an element of Zn, is 0 if n is odd and n/2 if n is even. For

instance, EGZ3 consists of the 4 multisets {0, 0, 0}, {0, 1, 2}, {1, 1, 1}, and {2, 2, 2}.
The notation EGZn refers to the Erdős-Ginzburg-Ziv Theorem [5], which is stated be-

low. Following it we give a proposition motivating this terminology; its proof gives a simple
one-to-one correspondence between EGZn and the sets considered by Erdős, Ginzburg, and
Ziv.

Theorem 2 (Erdős, Ginzburg, and Ziv [5]). Each set of 2n − 1 integers contains some
subset of n elements the sum of which is a multiple of n.

Proposition 3. There is a one-to-one correspondence between EGZn and n-element sub-
sets of [1, 2n− 1] whose sum is a multiple of n.

Proof. Let A = {a1, . . . , an} be a subset of [1, 2n − 1] such that a1 + · · · + an is divisible
by n. Without loss of generality we can further assume that a1 < a2 < · · · < an. Let
bi = ai− i. The mapping A 7→ {b1, . . . , bn} is a bijection onto EGZn. Further proof details
are omitted but can be found in [4], as with other results presented in this abstract.

The sequence of cardinalities(
|EGZn|)n≥1 = (1, 1, 4, 9, 26, 76, 246, 809, 2704, 9226, 32066, . . . )

is entry A145855 in the OEIS [7]. As recorded in that OEIS entry, Jovović conjectured
and Alekseyev [1] proved in 2008 that

|EGZn| =
1

2n

∑
d|n

(−1)n−dϕ(n/d)

(
2d

d

)
, (4)

where the sum runs over all positive divisors of n and ϕ is Euler’s totient function. A
generalization of this result was given by Chern [3] in 2019.
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The zeros in a multiset M ∈ EGZn play a prominent role in our construction. We now
introduce a generating function to record their number. For a multisetM ∈ EGZn let |M |i
be the number of occurrences of i in M . Furthermore, let

EGZn(t) =
∑

M∈EGZn

t|M |0

be the polynomial recording the distribution of zeros in multisets belonging to EGZn. For
instance, EGZ3(t) = 2 + t+ t3 (looking at the distribution of 1s or 2s in EGZ3 would result
in the same polynomial). Define the generating functions

EGZ(x, t) =
∑
n≥1

EGZn(t)xn and S(x) =
∑
n≥0

|Sn|xn.

Our main result, Theorem 4, is a factorization of the generating function for pointed score
sequences:

S
r
(x, t) = EGZ(x, t)S(x). (5)

Let (s, i) ∈ S r
n. Viewing i is an element of the codomain of s we find that S r

(x, 0) consists
of terms stemming from pairs (s, i) such that s−1(i) is empty; i.e. i is outside the image of
s. Thus, S r

(x, 1)− S r
(x, 0) counts pairs (s, i) for which i is in the image of s. Let

S
b
n = {(s, i) ∈ S r

n : i ∈ Im(s)} = {(s, i) ∈ S r
n : i = sj for some j ∈ [n]}

and let S b
(x) = S

r
(x, 1)−S r

(x, 0) be the corresponding generating function. For instance,
S

b
3 consists of the 4 elements ((0, 1, 2), 0), ((0, 1, 2), 1), ((0, 1, 2), 2), and ((1, 1, 1), 1). We

will show (in Corollary 6) that S b
(x) = xC(x)S(x), where C(x) = (1−

√
1− 4x)/(2x) is the

generating function for the Catalan numbers Cn =
(
2n
n

)
/(1 + n). This striking occurrence

of the Catalan numbers was in fact the original inspiration for our work. It was in the
summer of 2019 that we experimented with score sequences and conjectured the identity.
Despite ample attempts we were for the longest time unable to prove it.

By setting t = 1 in Equation 5 and noting that S r
(x, 1) = xS ′(x) it follows that

xS ′(x) = EGZ(x, 1)S(x), (6)

a fact conjectured by Paul D. Hanna as recorded in the OEIS entry A000571 in 2013.
Equation 6 may alternatively be written

(
logS(x)

)′
= EGZ(x, 1)/x and so

S(x) = exp

(∑
n≥1

|EGZn|
n

xn

)
,

which arguably is the most elegant way of expressing the relation between |Sn| and |EGZn|.
The most efficient way of computing the numbers |Sn| is, however, to use the recursion
underlying Equation 6. Namely, |S0| = 1 and, for n ≥ 1,

|Sn| =
1

n

n∑
k=1

|Sn−k||EGZk|.

See Corollary 8 and the discussion following it.
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2 The main theorem and its bijection
Let the generating functions S r

(x, t), EGZ(x, t) and S(x) be defined as in Section 1.

Theorem 4. We have S r
(x, t) = EGZ(x, t)S(x).

The proof of Theorem 4 is combinatorial and is achieved by creating a bijection

Φ : S
r
n →

n⋃
k=1

EGZk × Sn−k

that maps a pointed score sequence to a pair consisting of a multiset and a score sequence.
A property of this bijection is that, for (M, v) = Φ(s, i), the number of occurrences of i in
s is equal to the multiplicity of zero in M . Before defining Φ we need to introduce several
necessary concepts.

A nonempty directed graph is said to be strongly connected if there is a directed path
between each pair of vertices of the graph. Note that we do not consider the empty
graph to be strongly connected. A strong score sequence is one which stems from a
strongly connected tournament. Equivalently (see Harary and Moser [6, Theorem 9]),
s = (s0, . . . , sn−1), with n ≥ 1, is a strong score sequence if the inequality (2) of Theorem 1
is always strict; that is, s0 + · · · + sk−1 >

(
k
2

)
for 1 ≤ k < n. Let us define the direct sum

of two score sequences u ∈ Sk and v ∈ S` by u ⊕ v = uv′, where v′ is obtained from v
by adding k to each of its letters and juxtaposition indicates concatenation. For instance,
(0) ⊕ (0) ⊕ (1, 1, 1) = (0, 1, 3, 3, 3). If U and V are tournaments having score sequences u
and v, one may view the direct sum u⊕ v as the score sequence of the tournament where
arrows are placed between the vertices of U and V such that they all point towards U :

This may easily be seen to be independent of the choice of tournaments.

Lemma 5. Let s ∈ Sn. If s0 + · · · + sk−1 =
(
k
2

)
for some k < n, then u = (s0, . . . , sk−1)

and v = (sk − k, . . . , sn−1 − k) are both score sequences, and s = u⊕ v.

A direct consequence of Lemma 5 is that every score sequence s can be uniquely written
as a direct sum s = t1 ⊕ t2 ⊕ · · · ⊕ tk of nonempty strong score sequences; in this context,
the ti will be called the strong summands of s. In terms of underlying tournaments we
have the picture:

We are now almost in a position to define the promised map Φ, but first a couple of
definitions. Assume that we are given a score sequence s = (s0, s1, . . . , sn−1) ∈ Sn.
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• For any integer j, let s+ j denote the sequence obtained by adding j to each element
of s, reducing modulo n, and sorting the outcome in nondecreasing order. Note
that s+ j need not be a score sequence even though s is. E.g. s = (1, 1, 1) is a score
sequence, but s+1 = (2, 2, 2) is not. On the other hand, if s = (0, 1, 2) then s+1 = s
is a score sequence. A characterization of when s + j is a score sequence is given in
[4, Lemma 7].

• Let µ(s + j) denote the multiset {s0 + j, s1 + j, . . . , sn−1 + j} with elements in the
cyclic group Zn.

Given a pointed score sequence (s, i) ∈ S
r
n, write s = t1 ⊕ t2 ⊕ · · · ⊕ tk and let j be

the smallest index such that i < |t1 ⊕ · · · ⊕ tj|. Another way to define j is as the smallest
prefix t1 ⊕ · · · ⊕ tj of strong summands of s that begins s0, s1, . . . , si. Define the two score
sequences u and v by

u = t1 ⊕ · · · ⊕ tj and v = tj+1 ⊕ · · · ⊕ tk.

Finally, we let
Φ(s, i) :=

(
µ(u− i), v

)
.

As an example, consider the score sequence s = (0, 2, 2, 3, 3, 5, 7, 7, 7); its decomposition
into strong summands is s = (0) ⊕ (1, 1, 2, 2) ⊕ (0) ⊕ (1, 1, 1). With i = 3 we get u =
(0)⊕ (1, 1, 2, 2) = (0, 2, 2, 3, 3), v = (0)⊕ (1, 1, 1) = (0, 2, 2, 2), u− 3 = (0, 0, 2, 4, 4) and so
Φ(s, 3) =

(
{0, 0, 2, 4, 4}, (0, 2, 2, 2)

)
.

Corollary 6. We have S b
(x) = xC(x)S(x), where C(x) is the generating function for the

Catalan numbers.

Corollary 7. We have S(x) = exp

(∑
n≥1 |EGZn|xn/n

)
.

We end by comparing our result (Corollary 7) with earlier results on the enumeration
of the ordered score sequences (s0, s1, . . . , sn−1), also called score vectors. That is, if G is
a tournament on the vertex set {v0, v1, . . . , vn−1}, then si is the out-degree of vi in G. For
instance, while there are only two score sequences of length 3, namely (1, 1, 1) and (1, 2, 3),
there are 7 score vectors of length 3: the vector (1, 1, 1) together with the 6 permutations
of (1, 2, 3).

Stanley and Zaslavsky [14] have shown that the number of score vectors of length n
equals the number of (labeled) forests on n nodes. A combinatorial proof was subsequently
given by Kleitman and Winston [8]. Cayley [2] famously gave the formula nn−2 for the
number of trees on n nodes. From the theory of exponential generating functions it imme-
diately follows that exp

(∑
n≥1 n

n−2xn/n!
)
is the exponential generating function of forests,

and thus also of score vectors.
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3 The number of score sequences
If two power series A(x) = 1 +

∑
n≥1 anx

n and B(x) =
∑

n≥1 bnx
n satisfy xA′(x)/A(x) =

B(x) and hence logA(x) =
∑

n≥1 bnx
n/n, then one readily obtains a closed formula for an

by expanding and identifying coefficients in A(x) = exp
(
b1x

1/1
)

exp
(
b2x

2/2
)
· · · . Applying

this to the equation in Corollary 7 we arrive at

|Sn| =
1

n!

∑
π∈Sym(n)

∏
`∈C(π)

|EGZ`|, (7)

where Sym(n) is the symmetric group of degree n and C(π) encodes the cycle type of π;
i.e. there is an ` ∈ C(π) for each `-cycle of π. While having the virtue of being closed,
this formula does not lend itself to quickly calculating |Sn|. For that purpose the following
recursion is better suited.

Corollary 8. For n ≥ 1, |Sn| =
n∑
k=1

|Sn−k||EGZk| =
1

n

n∑
k=1

|Sn−k|
2nk

∑
d|k

(−1)k−dϕ(k/d)

(
2d

d

)
.

This allows us to calculate all values of |Sk| for k ≤ n in Θ(n2) time, assuming con-
stant time integer operations. This is an improvement on earlier results by Narayana and
Bent [11]. Their recursive formula can be implemented to find |Sn| in Θ(n3) time, but
no faster since their recursive function must always visit Θ(n3) states to do so; to get all
|Sk| for k ≤ n takes Θ(n4) time due to lack of overlap in the states recursively visited for
different k.

Since S(x) = (1 − T (x))−1, where T (x) is the generating function for the number
of strong score sequences |Tk| having length k, this recursive computation method can be
extended to |Tk|. We first calculate the values |Sk| and use this recursion to calculate all the
values |Tk| for k ≤ n in Θ(n2) time. This is the same method as used by Stockmeyer [15],
just calculating the underlying |Sk| faster which brings the total time complexity down
from Θ(n4) to Θ(n2).
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