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Abstract

Let Σ = {a1, ..., an} be a set of positive integers with a1 < · · · < an such that all
2n subset sums are distinct. A famous conjecture by Erdős states that an > c · 2n for
some constant c, while the best result known to date is of the form an > c · 2n/

√
n.

In this paper, we propose a generalization of the Erdős distinct sum problem that
is in the same spirit as those of the Davenport and the Erdős-Ginzburg-Ziv constants
recently introduced in [7] and in [6]. More precisely, we require that the non-zero
evaluations of the m-th degree symmetric polynomial are all distinct over the sub-
sequences of Σ. Even though these evaluations can not be seen as the values assumed
by the sum of independent random variables, surprisingly, the variance method works
to provide a nontrivial lower bound on an. Indeed, the main result here presented is
to show that

an > cm · 2
n
m /n1− 1

2m .
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1 Introduction
For any n ≥ 1, consider sets {a1, ..., an} of positive integers with a1 < · · · < an whose
subset sums are all distinct. A famous conjecture, due to Paul Erdős, is that an ≥ c · 2n
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for some constant c > 0. Using the variance method, Erdős and Moser [10] (see also [1]
and [13]) were able to prove that an ≥ 1/4 · n−1/2 · 2n. No advances have been made
so far in removing the term n−1/2 from this lower bound, but there have been several
improvements on the constant factor, including the work of Dubroff, Fox, and Xu [11],
Guy [12], Elkies [9], Bae [4], and Aliev [3]. In particular, the best currently known lower
bound states that an ≥ (1 + o(1))

√
2
π

1√
n
2n. Two simple proofs of this result, first obtained

unpublished by Elkies and Gleason, are presented in [11]. In the other direction, the
best-known construction is due to Bohman [5] (see also [14]), who showed that there exist
arbitrarily large such sets with an ≤ 0.22002 · 2n.

Several variations on the problem appear during the years such as [2] and [8]. In
this paper, we generalize the Erdős distinct sum problem by requiring that the non-zero
evaluations of them-th degree symmetric polynomial are all distinct over the sub-sequences
of Σ. The problem here considered is inspired by those of the Davenport and the Erdős-
Ginzburg-Ziv constants recently introduced in [7] and in [6].

More formally, given a sequence of real numbers Σ = {a1, . . . , an} and a subset A ⊆
[1, n], we define the m-th (degree) evaluatio emΣ (A) =

∑
{i1,...,im}⊆A
i1<···<im

ai1 · · · aim , where we

adopt the convention that emΣ (A) = 0 if |A| < m.

Problem 1.1. For every positive integer n, find the least positive M = M(n) such that
there exists an increasing sequence Σ = (a1, . . . , an) of real numbers with ai ∈ [0,M ] for
every i such that for all distinct A1, A2 ⊆ [1, n] of size at least m we have that |emΣ (A1) −
emΣ (A2)| ≥ 1.

A sequence as in Problem 1.1 will be called M-bounded m-th evaluation distinct.
In Section 2, we provide lower bounds on the values of M in Problem 1.1 using the

variance method proving that
M > cm · 2

n
m/n1− 1

2m .

Then, in Section 3, we derive an upper bound presenting a direct construction.

2 Lower Bounds
One first lower bound to the value ofM of Problem 1.1 can be provided using the pigeonhole
principle. Indeed, since the number of non-zero evaluations of emΣ is 2n −

∑m−1
i=0

(
n
i

)
=

(1 + o(1))2n, these evaluations are spaced at least by one, and each of these is smaller than
emΣ ([1, n]) ≤

(
n
m

)
Mm ≤ nmMm/cm, it follows that M > cm · 2

n
m/n.

Now we see that using the variance method (see [1], [10] or [12]), it is possible to improve
this lower bound.

Theorem 2.1. Let Σ = (a1, . . . , an) be an m-th evaluation distinct sequence in R (resp.
Z) that is M-bounded. Then

M > (1 + o(1))
21− 1

m ((m− 1)!)
1
m

3
1

2m

2
n
m

n1− 1
2m

.
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Proof. Let Σ = (a1, . . . , an) be such a sequence of real (resp. integer) numbers. Pick a
subset A uniformly at random from 2[1,n] and define the real random variable X = emΣ (A).
We denote by µ := E[X] and σ2 := E[X2]−µ2 respectively the expected value and the vari-
ance of the random variable X. Clearly, µ = 1/2n

∑
A⊆[1,n]: |A|≥m e

m
Σ (A). Here we have that

the monomial ai1 . . . aim appears in the evaluation emΣ (A) whenever A contains i1, . . . , im
which happens for 2n−m subsets of [1, n]. Therefore, we have that µ = emΣ ([1, n])/2m. By
definition of variance we have that:

2nσ2 =
∑

A⊆[1,n]

(emΣ (A)− µ)2 =
∑

A⊆[1,n]

 ∑
i1<i2<···<im
i1,...,im∈A

ai1 . . . aim −
∑

i1<i2<···<im
i1,...,im∈[1,n]

ai1 . . . aim
2m


2

.

Due to the symmetry of emΣ , there exist coefficients C1, . . . , Cm such that the latter sum
can be written as follows:

C0

∑
i1<i2<...<i2m
i1,...,i2m∈[1,n]

ai1 . . . ai2m + C1

∑
i1<i2<...<i2m−1

i1,...,i2m−1∈[1,n]

∑
`∈[1,2m−1]

ai1ai2 . . . a
2
i`
. . . ai2m−1+ (1)

+ . . .+ Cm
∑

i1<i2<...<im
i1,...,im∈[1,n]

a2
i1
. . . a2

im .

One can prove that C0 = 0, C1 = 2n−2m
(

2m−2
m−1

)
and Ck = O(2n) for every k ∈ {2, . . . ,m}.

This can be seen since the coefficient of ai1 . . . ai2m is
(

2m
m

)
times that obtained by taking

the term ai1 . . . aim from the first (emΣ (A) − µ) in the product and aim+1 . . . ai2m from the
second one. Then, the coefficient of a2

i1
. . . ai2 . . . ai2m−1 is

(
2m−2
m−1

)
times that obtained taking

the term ai1 . . . aim from the first (emΣ (A) − µ) in the product and ai1aim+1 . . . ai2m−1 from
the second one. Symmetrically, the same is true for every term ai1 . . . a

2
i`
. . . ai2m−1 . Finally,

the coefficient of a2
i1
. . . a2

ik
aik+1

. . . ai2m−k
is
(

2m−2k
m−k

)
times that obtained taking the term

ai1 . . . aim from the first (emΣ (A)− µ) in the product and ai1 . . . aikaim+1 . . . ai2m−k
from the

second one. Summing up, we can rewrite equation (1) as

2nσ2 = C1

∑
i1<i2<...<i2m−1

i1,...,i2m−1∈[1,n]

∑
`∈[1,2m−1]

ai1ai2 . . . a
2
i`
. . . ai2m−1+ (2)

+O(2n)

 m∑
k=2

Ck
∑

i1<i2<...<i2m−k

i1,...,i2m−k∈[1,n]

∑
`1<...<`k

`1,...,`k∈[1,2m−k]

ai1ai2 . . . a
2
i`1
. . . a2

i`k
. . . ai2m−k

 .

In equation (2), each Ck multiplies a sum of
(

n
2m−k

)
·
(

2m−k
k

)
< n2m−k

(2m−2k)!k!
terms. Since
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an is the largest element of the sequence, we get:

2nσ2 <
n2m−1

(2m− 2)!

(
2m− 2

m− 1

)
2n−2ma2m

n (1 + o(1)) =

(
n2m−1

((m− 1)!)2
2n−2ma2m

n

)
(1 + o(1)).

(3)

On the other hand, for |A| ≥ m, the evaluations emΣ (A) are all different and spaced
at least by one, and hence we have that (emΣ (A)− µ)2 assumes at least 1

2
(2n −

∑m−1
i=0

(
n
i

)
)

different values. Since the sum
∑

A⊆[1,n](e
m
Σ (A) − µ)2 is minimized when the values are

around µ and are spaced by one, we obtain the lower bound:

1 + o(1)

12
23n = 2

1
2

(2n−
∑m−1

i=0 (n
i))∑

i=0

i2 ≤ 2nσ2. (4)

To conclude the proof, it is enough to compare (3) and (4).

3 Upper bounds
In this section we provide an upper bound to the value of M in Problem 1.1 by presenting
the following direct construction.

Lemma 3.1. Let ε1, ε2 be two reals such that ε1 > ε2 > 0 and let m ≥ 2 be an integer. Then
for every n large enough the sequence Σ = (a1, a2, . . . , an), where ai = (2+ε1)n−(2+ε2)i−1

for i = 1, 2, . . . , n, is m-evaluation distinct.

Proof. Suppose by contradiction there exists two distinct subsets B,C ⊆ [1, n] such that

|emΣ (B)− emΣ (C)| < 1 . (5)

For an arbitrary subset S ⊆ [1, n] with |S| ≥ m, by definition we have:

emΣ (S) =
m∑
j=0

(−1)j(2 + ε1)(m−j)n
(
|S| − j
m− j

) ∑
{i1,i2,...,ij}⊆S
i1<i2<...<ij

(2 + ε2)i1+i2+...+ij−j . (6)

We first show that inequality (5) implies |B| = |C|. Suppose without loss of generality
that |B| > |C|. Then (6) implies that:

emΣ (B)− emΣ (C) = (2 + ε1)mn
[(
|B|
m

)
−
(
|C|
m

)]
+

m∑
j=1

(−1)j(2 + ε1)(m−j)n

(|B| − jm− j

) ∑
{i1,i2,...,ij}⊆B
i1<i2<...<ij

(2 + ε2)i1+i2+...+ij−j −
(
|C| − j
m− j

) ∑
{i1,i2,...,ij}⊆C
i1<i2<...<ij

(2 + ε2)i1+i2+...+ij−j

 .
(7)
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Now it can be seen that each term in the first summation of equation (7) is of order

O

(
nm(2 + ε1)mn

(
2+ε2
2+ε1

)jn)
, for j = 1, 2, . . . ,m and n → ∞. Hence, asymptotically in n,

we can rewrite (7) as emΣ (B)−emΣ (C) = (2+ε1)mn
[(|B|

m

)
−
(|C|
m

)]
(1+o(1)), since ε1 > ε2.This

clearly contradicts (5), and hence we must have |B| = |C|.
Next, let t be an integer such that |B| = |C| = t and let B := {b1, b2, . . . , bt} and

C := {c1, c2, . . . , ct}, where b1 < b2 < . . . < bt and c1 < c2 < . . . < ct. Since B 6= C, there
exists an integer ` ∈ [1, t] such that b` 6= c` while b`+1 = c`+1, b`+2 = c`+2,. . ., bt = ct.
Suppose without loss of generality that b` > c`. Then we have:

|emΣ (B)− emΣ (C)| =

∣∣∣∣∣(2+ε1)(m−1)n

(
t− 1

m− 1

)(∑
i≤`

(2 + ε2)bi−1 − (2 + ε2)ci−1

)
+

m∑
j=2

(−1)j−1

(2+ε1)(m−j)n
(
t− j
m− j

) ∑
1≤i1<i2<...<ij≤t

i1≤`

(2 + ε2)bi1+bi2+...+bij−j − (2 + ε2)ci1+ci2+...+cij−j


∣∣∣∣∣ .
(8)

To conclude the proof, we need to lower bound equation (8). The summation formula for
the geometric series implies that:

∑
i≤`(2 + ε2)ci−1 ≤

∑
1≤i≤c`(2 + ε2)i−1 < (2 + ε2)c`/(1 +

ε2) ≤ (2 + ε2)b`−1/(1 + ε2), and since each term in the summation over j in equation (8) is,

as n→∞, of order O
(
nm(2 + ε1)(m−1)n(2 + ε2)b`−1

(
2+ε2
2+ε1

)(j−1)n
)
, we obtain the following

lower bound:

|emΣ (B)− emΣ (C)| >
∣∣∣∣(2 + ε1)(m−1)n

(
t− 1

m− 1

)
(2 + ε2)b`−1

(
1− 1

1 + ε2

)∣∣∣∣ (1 + o(1)) .

The theorem now follows since the right hand side of the above inequality is greater than 1
for sufficiently large n’s.

Along the same lines of Lemma 3.1, we can prove the following corollary. We do not
report here the proof due to space limitations.

Corollary 3.2. Let ε1, ε2 be two reals such that ε1 > ε2 > 0 and let m ≥ 2 be an
integer. Then for every n large enough the sequence Σ = (a1, a2, . . . , an), where ai =
b(2 + ε1)n − (2 + ε2)i−1c for i = 1, 2, . . . , n, is m-evaluation distinct.

We observe that Corollary 3.2 holds also for m = 1 but we obtain a bound that is worse
than the ones given in [5] and [14]. As an easy consequence of Corollary 3.2, one can prove
the following theorem.

Theorem 3.3. There exists a sequence Σ = (a1, a2, . . . , an) of n integers that is m-
evaluation distinct and M-bounded such that M ≤ 2n+o(n), for n→∞.
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