
Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

Beyond the Erdős-Sós conjecture

(Extended abstract)

Akbar Davoodi∗ Diana Piguet∗ Hanka Řada∗†

Nicolás Sanhueza-Matamala‡

Abstract
We prove an asymptotic version of a tree-containment conjecture of Klimošová,

Piguet and Rozhoň [European J. Combin. 88 (2020), 103106] for graphs with quadrat-
ically many edges. The result implies that the asymptotic version of the Erdős-Sós
conjecture in the setting of dense graphs is correct.
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1 Introduction
One of the most classical questions in graph theory is to determine the number of edges in
a host graph G that forces the existence of a copy of another guest graph H. For H with
chromatic number at least 3, this is well understood thanks to the Erdős–Stone–Simonovits
theorem [9, 8]. For bipartite H much less is known, and even the case of trees is widely
open. A seminal conjecture by Erdős and Sós [7] says that graphs with average degree
larger than k − 1 should contain all k-edge trees.

Conjecture 1 (Erdős-Sós conjecture). Every graph G with average degree d(G) > k − 1
contains every tree with k edges.
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The conjecture has been verified for certain families of trees (see [14]). A solution for
all large enough trees was announced by Ajtai, Komlós, Simonovits and Szemerédi [1, 3, 2],
but remains unpublished.

It is well-known that any graph that satisfies d(G) > k − 1 contains a subgraph G′

with ∆(G′) ≥ k and δ(G′) ≥ k/2. However, this weaker condition on the host graph is
not enough to ensure the containment of all trees. It fails for trees of diameter four, as
shown by examples of Havet, Reed, Stein and Wood [10, Section 1]. It is natural to ask
how many vertices of degree at least k in G together with δ(G) ≥ k/2 would guarantee the
containment of all k-edge trees. A conjecture along these lines was proposed by Klimošová,
Piguet, and Rozhoň.

Conjecture 2 (Klimošová, Piguet, Rozhoň, [13, Conjecture 1.4]). Every n-vertex graph G
with δ(G) ≥ k/2 and at least n/(2

√
k) vertices of degree at least k contains all k-edge trees.

Our main result is an approximate version of Conjecture 2 for dense graphs.

Theorem 3. For any η, q > 0, there exists an n0 ∈ N so that for every n ≥ n0 and all
k ≥ qn, any n-vertex graph G with minimal degree δ(G) ≥ (1 + η)k/2 and with at least ηn
vertices of degree at least (1 + η)k contains all k-vertex trees.

Theorem 3 implies an approximate dense version of the Erdős-Sós conjecture.

Corollary 4. For any η, q > 0 there exists an n0 ∈ N so that for every n ≥ n0 and all
k ≥ qn any n-vertex graph with average degree at least (1 + η)k contains any tree on at
most k vertices as its subgraph.

Corollary 4 strengthens similar results by Rozhoň [13] and Besomi, Pavez-Signé and
Stein [4, Theorem 1.3]. They give the same result as our Corollary 4 but only for trees T on
k vertices which in addition satisfy ∆(T ) = o(k); in contrast, our result works for all trees.
It also gives a proof independent of the one proposed by Ajtai, Komlós, Simonovits, and
Szemerédi [1, 3, 2] in the case the host graph is dense with the very mild strengthening that
its average degree is required to be slightly larger than k. We also remark that Besomi,
Pavez-Signé and Stein [4, Theorem 1.1] proved a version of the Erdős–Sós conjecture for
k-edge trees which is sharp in the average degree condition (it only needs d(G) > k − 1)
but works only for large bounded-degree trees (it needs that G is an n-graph, ∆(T ) ≤ ∆,
and k ≥ qn, with n large with respect to q and ∆).

1.1 Notation

As is somewhat standard, we write a� b in statements to mean “for all b > 0, there exists
a > 0 such that the following is valid”. Longer chains of constants are interpreted similarly,
choosing the constants from right to left. We always assume those constants are positive,
and if 1/n appears in such a chain of constants we assume that n is a positive integer.

For two disjoint subsets X and Y of V (G), the bipartite density of the pair (X, Y )
is given d(X, Y ) = |E(X, Y )|/(|X||Y |), where |E(X, Y )| denotes the number of edges
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between X and Y . For a graph G, we denote by d(G) the average degree of G, i.e.
d(G) := 2|E(G)|/|V |. For a vertex v ∈ V (G), let NG(v) denote the set of neighbours of v
in G. We will omit G from the notation if the graph is clear from context.

A digraph is a graph in which every edge is oriented, meaning that it consists of an
ordered pair of vertices. We admit cycles of length 2 (where the pairs of edges # »uv and # »vu
are both present), but we do not allow for parallel edges in the same direction, and we also
forbid loops.

2 Sketch of the proof and Main lemmas
Our proof has three main steps. First, we describe a way to cut the tree to be embedded
into suitable chunks. Secondly, we prepare the host graph to embed the tree. For this,
we use the Szemerédi’s Regularity Lemma, which is somewhat standard in this type of
proofs. A crucial definition, and our main innovation, in this step is what we call skew
matching pairs, which are required to describe the structure which we wish to find in the
host graph. The outcome of this step is summarised in what we call the Structural Lemma
(Lemma 12), which is the main technical lemma of our work. In the third and final step,
we construct an embedding given the structures in both the tree and the host graph, and
this process is summarised in the Tree Embedding Lemma (Lemma 13).

The rest of this extended abstract is structured as follows. First, we state the aforemen-
tioned lemmas in more detail. Next, assuming the validity of those lemmas, we give short
proofs of our main results: Section 3.1 contains the proof of Theorem 3 and Section 3.2
contains the proof of Corollary 4.

2.1 Preparing the tree

To prepare the embedding, we use the following handy concept used by Hladký, Komlós,
Piguet, Simonovits, Stein, and Szemerédi [11, Definition 3.3]. It gives a partition of a tree
into vertex-disjoint smaller trees which also satisfy several additional useful properties.

If T is a tree rooted at r, and T̃ ⊆ T is a subtree with r /∈ V (T̃ ), the seed of T̃ is
the unique vertex x ∈ V (T ) \ V (T̃ ) which is farthest from r and also belongs to every
(r, v)-path in T , for every v ∈ V (T̃ ).

Definition 5 (`-fine partition). Let T be a tree on k vertices rooted at a vertex r. An
`-fine partition of T is a quadruple (WA,WB,FA,FB), where WA,WB ⊆ V (T ) and FA,FB
are families of subtrees of T such that

(FP1) the three setsWA,WB, and {V (T ∗)}T ∗∈FA∪FB
partition V (T ) (in particular, the trees

in FA ∪ FB are pairwise vertex-disjoint),

(FP2) r ∈ WA ∪WB,

(FP3) max{|WA|, |WB|} ≤ 336k/`,
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(FP4) |V (T ∗)| ≤ ` for every T ∗ ∈ FA ∪ FB,

(FP5) V (T ∗)∩N(WB) = ∅ for every T ∗ ∈ FA, and V (T ∗)∩N(WA) = ∅ for every T ∗ ∈ FB;

(FP6) each tree of FA ∪ FB has its seeds in WA ∪WB,

The crucial fact, proven in [11, Lemma 3.5], is that any tree T admits an `-fine partition,
for any 1 ≤ ` ≤ |V (T )|. We denote by T ρa1,a2,b1,b2 the set of trees T , so that there is a
(ρ|V (T )|)-fine partition (WA,WB,FA,FB) of T so that |Vi(FA)| = ai, |Vi(FB)| = bi, for
i ∈ {1, 2}, where V1(FA) (resp. V2(FA)) is the set of vertices of FA that are at odd (resp.
even) distance from WA, and Vi(FB) are defined analogously with respect to WB.

2.2 Preparing the host graph

In this step, we find a suitable structure in the host graph to embed the tree, using the
information about the fine partition found in the previous step. The description of this step
requires Szemerédi’s Regularity Lemma. Before stating it, we recall the standard notions
involved in its statement.

Definition 6 (Regular pair and regular partitions). A pair (X, Y ) with X, Y ⊆ V (G) is
said to be ε-regular, if for any sets X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |
we have that |d(G[X ′, Y ′])− d(G[X, Y ])| < ε.

We say that a partition {V0, . . . , Vt} of V (G) is an ε-regular partition if |V0| ≤ ε|V (G)|,
and for every 1 ≤ i ≤ t, all but at most εt values of 1 ≤ j ≤ t are such that the pair
(Vi, Vj) is not ε-regular.1 We call the cluster V0 the garbage set. We call a regular partition
equitable if |Vi| = |Vj| for every 1 ≤ i < j ≤ t.

Szemerédi’s Regularity Lemma ensures that regular partitions exist for every graph.

Theorem 7 (Szemerédi’s Regularity Lemma, [15]). Let 1/n � 1/M0 � ε. Any n-vertex
graph has an ε-regular equitable partition {V0, V1, . . . , Vt} with 1/ε ≤ t ≤M0.

We capture the structure of a regular partition in a so-called reduced graph.

Definition 8 (Reduced graph). Given a graphG, d > 0, and a ε-regular equitable partition
P = {V0, . . . , Vt} of V (G), we define the d-reduced graph Γ as follows. The vertex set of Γ
is {1, . . . , t}, and there is an edge ij ∈ E(Γ) if and only if the pair (Vi, Vj) is ε-regular and
d(Vi, Vj) ≥ d.

As mentioned before, the Structural Lemma (Lemma 12) will yield a useful structure
in the host graph G; more precisely, this structure will be defined in a reduced graph of G.
In essence, the structure we want is an “allocation” of the tree in the clusters of the reduced

1We point out that ε-regular partitions are most commonly defined in a slightly different way, with
the property that at most εt2 pairs of the partition are not ε-regular. But the version we use is also
common, and in fact the existence of such partitions can be deduced from the well-known ‘degree form’ of
Szemerédi’s Regularity Lemma, see e.g. [12, Theorem 1.10].
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graph which respects the sizes of the various parts of T given by the fine partition. If T
is in T ρa1,a2,b1,b2 , the structure will incorporate the values a1, a2, b1, b2 to describe where the
parts of the tree will be allocated.

In order to describe this structure precisely, we need some definitions. The basic build-
ing block is what we call a skew fractional matching, whose definition is inspired by the
standard fractional matching.

Given a graph G, its associated digraph G↔ is the digraph with the same vertex set
as G and # »uv and # »vu are present for each undirected uv ∈ E(G).

Definition 9. Let G be a graph and γ ≥ 0.

(i) An γ-skew fractional matching is a function σ : E(G↔) → [0, 1] such that for any
vertex u ∈ V (G),

1

1 + γ

∑
v∈NG(u)

σ( # »uv) +
γ

1 + γ

∑
v∈NG(u)

σ( # »vu) ≤ 1.

The weight of σ is W (σ) :=
∑

uv∈E(G) σ( # »uv) + σ( # »vu).

(ii) Set σ1(u) := 1
1+γ

∑
v∈N(u) σ( # »uv) and σ2(u) := γ

1+γ

∑
v∈N(u) σ( # »uv). Abusing notation,

we shall use the symbol σ to describe the total charge of σ on u, defined as σ(u) :=
σ1(u) + σ2(u).

(iii) If σ, σ′ are γ-skew and γ′-skew matchings respectively, we say σ, σ′ are disjoint if, for
every u ∈ V (G), σ(u) + σ′(u) ≤ 1.

Intuitively, γ-skew fractional matchings can be understood as fractional matchings in
graphs where the weight of the edge is distributed in an unbalanced way, meaning that
one end of the edge gets γ times the weight of the other end. Here, the direction of this
imbalance is given by the direction of the edge in the digraph.

Definition 10. Let G be a graph, γ ≥ 0, and u ∈ V (G). We will say a γ-skew fractional
matching σ is anchored in N(u) if σ1(v) > 0 implies that v ∈ N(u).

Definition 11. Let G be a graph, γA, γB > 0. Given an edge cd ∈ E(G), a (γA, γB)-skew
matching pair anchored in

#»

cd is a pair (σA, σB) such that

(i) σA and σB are disjoint,

(ii) σB is a γB-skew fractional matching anchored in N(d), and

(iii) σA is a γA-skew fractional matching anchored in N(c).

Lemma 12 (Structural Lemma: Simplified version). Let k ∈ N and let H be a graph such
that δ(H) ≥ k/2 and ∆(H) ≥ k. Let a1, a2, b1, b2 > 0 such that a1 + a2 + b1 + b2 = k. Let
γA := a2

a1
and γB := b2

b1
. Then H↔ admits a (γA, γB)-skew matching pair (σA, σB) anchored

in some edge
#»

cd ∈ E(H↔) such that W (σA) = a1 + a2 and W (σB) = b1 + b2.
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2.3 Embedding the tree

Based on the structure given by the Structural Lemma, the next lemma ensures that the
embedding of the tree T is possible.

Lemma 13 (Tree Embedding Lemma: Simplified version). Let 1/n � ρ � 1/M, ε �
d� η, q. Suppose G is an n-vertex graph, that P = {V0, V1, . . . , Vt} is a ε-regular equitable
partition of G with t ≤ M , and that Γ is the d-reduced graph obtained from G and P.
Suppose k ≥ qn and that we have numbers a1, b1 ∈ N and γA, γB ≥ 0 such that k =
(1+γA)a1+(1+γB)b1. Suppose Γ↔ admits a (γA, γB)-skew matching pair (σA, σB), anchored
in

#»

cd ∈ E(Γ↔), with weights satisfying W (σA)n ≥ (1 + η)(1 + γA)a1t and W (σB)n ≥
(1 + η)(1 + γB)b1t. Then G contains any k-vertex tree T ∈ T ρa1,γAa1,b1,γBb1.

3 Proof of the main results

3.1 Proof of Theorem 3

Now we give the proof of Theorem 3, assuming the validity of the main lemmas (Lemma 12,
Lemma 13).

Setting up the parameters. Suppose we are given input parameters η > 0, q > 0 and
k ≥ qn. We may assume that q, η � 1, or we just replace them with smaller values. We
set the following parameters to satisfy

1/n� ρ� 1/M � ε� d� η, q � 1. (1)

From now on we fix an arbitrary k-vertex tree T , and the goal is to show that T ⊆ G.

Processing the tree. By [11, Lemma 3.5], T has an (ρ|V (T )|)-fine partition. Let a1, a2, b1, b2
such that T ∈ T ρa1,a2,b1,b2 . By assumption, G satisfies δ(G) ≥ (1 + η)k/2 = (1 + η)|V (T )|/2
and at least ηn vertices of G have degree at least (1 + η)k = (1 + η)|V (T )|.

Preparing the host graph. We apply Theorem 7 on G with parameters ε and 1/M , and
obtain an ε-regular equitable partition {V0, V1, . . . , Vt}, with t ≤ M . Given G and P ,
let Γ be the d-reduced graph Γ. Standard arguments show that the reduced graph inherits
degree properties of the original graph, up to a small loss. In particular, it can be shown
that δ(Γ) ≥ (1 + η

40
)kt/(2n) and ∆(Γ) ≥ (1 + η

40
)kt/n.

We apply Lemma 12 with Γ, (1 + η
40

)kt/n, (1 + η
40

)ait/n and (1 + η
40

)bit/n playing
the roles of H, k and ai, bi, for i ∈ [2]. This outputs an (a2

a1
, b2
b1

)-skew matching pair
(σA, σB) anchored in some edge

#»

cd ∈ E(Γ↔) with W (σA) = (1 + η
40

)(a1 + a2)t/n and
W (σB) = (1 + η

40
)(b1 + b2)t/n.

Embedding the tree. Finally, we can apply Lemma 13 with a2/a1, b2/b1, η/40 playing the
roles of γA, γB, η respectively. This shows that T ⊆ G, as required.
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3.2 Proof of the approximate version of the Erdős–Sós conjecture

Now we derive Corollary 4 from Theorem 3. Let k = rn with r ≥ q > 0, and let G be a
graph on n vertices with average degree at least (1 + η)k. It is well-known [6, Proposition
1.2.2] that G contains an induced subgraph H such that δ(H) ≥ d(H)/2 ≥ d(G)/2 ≥ (1 +
η)k/2. Let m be the number of vertices of H, we clearly have (1 +η)k/2 ≤ δ(H) < m ≤ n.

For any λ > 0, let Xλ be the set of vertices of H whose degree in H is at least (1 +λ)k.
Then we have

(1 + η)km ≤ md(H) =
∑

v∈V (H)

degH(v) ≤ |Xλ|m+ (m− |Xλ|)(1 + λ)k,

which, by rearranging, gives |Xλ| ≥ (η−λ)km
m−(1+λ)k ≥ (η−λ)k. From now on, fix λ := ηk/(m+k).

This choice satisfies η ≥ λ ≥ ηr/(1 + r), and from the previous calculations we deduce
that H satisfies δ(H) > (1 + λ)k/2, and has at least (η − λ)k = λm vertices of degree at
least (1 +λ)k. Thus the statement follows by applying Theorem 3 to H, with λ,m playing
the role of η and n, respectively.

4 Final remarks
We stated our main technical lemmas (Lemma 12 and Lemma 13) in simplified versions
which are enough to give a faithful version of the main ideas of our proof. In our actual
proof, the statements are a bit more complicated since we need to consider weighted reduced
graphs, where each edge ij ∈ Γ receives a weight dij ∈ [0, 1] corresponding to the bipartite
density d(Vi, Vj) of the pair (Vi, Vj). Further details, and full proofs of the main lemmas,
will be found in the full version of the paper [5].
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