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Abstract

Suppose we have an eulerian (di)graph with a (directed) circuit decomposition.
We show that if the (di)graph is sufficiently dense, then it has an orientable embed-
ding in which the given circuits are facial walks and there are exactly one or two other
faces. This embedding has maximum genus subject to the given circuits being facial
walks. When there is only one other face, it is necessarily bounded by an euler circuit.
Thus, if the numbers of vertices and edges have the same parity, a sufficiently dense
(di)graph D with a given (directed) euler circuit C has an orientable embedding with
exactly two faces, each bounded by an euler circuit, one of which is C. The main
theorem encompasses several special cases in the literature, for example, when the
digraph is a tournament.
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1 Introduction and main results
When can a graph or digraph be cellularly embedding in a orientable surface so that it
has exactly two faces, each bounded by an euler circuit, such as shown in Figure 1? Is
it possible to specify one of the euler circuits in advance? When is it possible to specify
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an arbitrary circuit decomposition of the edges and complete it to an embedding with
just one more face, noting that the face is then necessarily bounded by an euler circuit?
Finding such a face achieves a maximum genus embedding having the circuits in a given
decomposition as facial walks.

 

Figure 1: An eulerian digraph (top), and a bi-eulerian orientable embedding of it, showing
the two faces bounded by euler circuits, one red and one blue (bottom). The diagram
depicts the embedding as a ribbon graph, while sewing a disc into each facial walk gives
the surface.

This leads more generally to the question of determining the maximum genus of an
embedding relative to a circuit decomposition. Beyond topological graph theory, these
questions arise in surprisingly diverse settings, including DNA self-assembly, Steiner triple
systems, and latin squares.

Our main result, given in Theorem 1.1, is that if an eulerian (di)graph is sufficiently
dense, then it is indeed always possible to achieve these special embeddings of maximum
orientable genus.

We allow graphs and digraphs to have loops and multiple edges. A circuit in a graph is
a closed trail. A graph is eulerian if it has a circuit (an euler circuit) that uses every edge
and every vertex (so the graph is necessarily connected). An embedding of a digraph D
is directed if every face is bounded by a closed directed walk of D. A direction-indifferent
embedding of a digraph need not have consistently directed facial walks. In a directed
embedding of a digraph, profaces are faces whose directed facial walks agree with the
clockwise orientation of the surface, while the directed facial walks of the antifaces oppose
it. We say that an embedding of a (di)graph G is bi-eulerian if it has exactly two faces,
each bounded by an euler circuit.
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Theorem 1.1. Let D be an n-vertex eulerian digraph where the minimum degree of the
underlying simple undirected graph of D is at least (4n + 2)/5. Let C be a directed circuit
decomposition of D. Then there is an orientable directed embedding of D with the elements
of C as the profaces and with exactly one or two antifaces, depending on whether |V (D)|+
|A(D)|+ |C| is odd or even, respectively.

This embedding has maximum genus among all orientable directed embeddings of D in
which all elements of C are profaces. This embedding also has maximum genus among all
orientable direction-indifferent embeddings of D in which all elements of C are faces.

A number of related results for both graphs and digraphs follow immediately from this
theorem, including Corollary 1.2.

Corollary 1.2. Let G be an n-vertex eulerian graph where the minimum degree of the
underlying simple graph of G is greater than or equal to (4n + 2)/5. Let T be any euler
circuit in G. Then there is a 2-face-colorable orientable embedding of G with T as the
unique face of one color and with exactly one or two faces of the other color, depending on
whether |V (G)|+ |E(G)| is even or odd, respectively.

This embedding has maximum genus among all 2-face-colorable orientable embeddings
of G. When |V (G)|+|E(G)| is even this is an orientable bi-eulerian embedding of G with T
as a specified face, and the embedding has maximum genus among all orientable embeddings
of G.

When G additionally has |V (G)| + |E(G)| even, Corollary 1.2 says there is a maxi-
mum orientable genus embedding of G that is bi-eulerian. However, in general not every
maximum genus embedding of such a G is bi-eulerian.

We do not know if the bound of (4n + 2)/5 in Theorem 1.1 is tight. The original
motivation for this problem came from an applied problem in DNA self-assembly posed
by Jonoska, Seeman and Wu [8], which required a special closed walk in a graph for a
DNA strand to follow. A formalization of the walk requirements in [3] led to edge-outer
embeddings of a graph, that is, orientable embeddings of a graph in which there is a special
face whose boundary uses every edge at least once. While [8] proves the existence of
such circuits, and [3] gives short algorithmic proof of existence, and proves the hardness of
finding an optimal (shortest outer facial walk) solution, there is no control over the number
or sizes of the remaining faces in the embedding.

The startlingly simple (to state!) and intriguing questions in the first paragraph
emerged from this application. Although determining the size of optimal edge-outer faces
is hard in general, for eulerian graphs any optimal edge-outer face is necessarily bounded
by an euler circuit. Thus, we seek to control the remaining faces in an optimal edge-outer
embedding of an eulerian graph by specifying them in advance with a circuit decomposi-
tion. Of particular interest are bi-eulerian orientable embeddings, particularly when one
of the circuits is specified in advance.

While our original motivation was DNA self-assembly, these and some closely related
questions have also received considerable attention in various other special settings.
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In [2], Edmonds proved that every eulerian graph has an bi-eulerian embedding in some
surface, but noted that his main theorem was not sufficient to determine the orientability
of the embedding. Restricting to the orientable case makes the existence problem quite
challenging. From a different perspective, Andersen, Bouchet, and Jackson in [1] focus
specifically on compatible euler circuits (A-trails) in 4-regular graphs and digraphs in low
genus surfaces.

Furthermore, a series of papers, [4, 5, 6, 7] authored by Griggs and Širáň and sometimes
also Erskine, Grannell, McCourt, or Psomas, discusses upper embeddings relative to a
triangular decomposition of a graph or digraph, and more specifically completing such
a decomposition to an embedding by adding an euler circuit. They are interested in
triangular decompositions which arise from structures in design theory such as Steiner
triple systems, configurations, and latin squares. One representative theorem can be stated
as follows:

Theorem 1.3 (Griggs, McCourt, and Širáň [6, Theorem 1.1]). Let C be an oriented Steiner
triple system, i.e., a decomposition of a regular tournament D into directed triangles. Then
there is an orientable directed embedding of D with the elements of C as the profaces and
with exactly one directed euler circuit antiface.

The results in these papers are generally specific to triangular decompositions of very
special classes of (di)graphs, such as complete or complete tripartite graphs. Our results
for arbitrary dense graphs encompass their results that involve complete graphs or tour-
naments, such as Theorem 1.3.

2 Manipulating facial circuits and proof outline
We first note that we can always form some orientable embedding of a digraph with a given
circuit decomposition as the profaces. The new faces are necessarily antifaces. We then
develop a number of structural results for manipulating the facial circuits in embedded
graphs. The following lemmas for example allow us to combine antifaces without altering
the given profaces.

A central tool is the following version for directed embeddings of a well-known operation
on embeddings of undirected graphs. It allows us to combine three antifaces incident with
the same vertex into a single face.

Lemma 2.1. Let Φ be an orientable directed embedding of an eulerian digraph D, and
v ∈ V (D). If A, B, and C are distinct antifaces that each contain v, then there is an
orientable directed embedding Φ′ of D that has the same profaces and antifaces as Φ except
that A, B and C are merged into a single antiface.

Interlaced vertices on a circuit, that is, a pair of vertices u and v that appear as
. . . u . . . v . . . u . . . v in the circuit, play a pivotal role here. When we have appropriately
interlaced vertices, we can merge faces, as in Lemma 2.2.
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Lemma 2.2. Let Φ be an orientable directed embedding of an eulerian digraph D, and
x, y ∈ V (D). Suppose that there are three distinct antifaces A,B,C where x and y are
interlaced on A, x occurs on B, and y occurs on C. Then there is an orientable directed
embedding Φ′ of D that has the same profaces and antifaces as Φ except that A, B and C
are replaced by a single antiface.

The density of the given (di)graph plays an important role in assuring the necessary
interlacements. Given a digraph D, let k be such that for each v ∈ V (D) there are at most
k vertices different from v that are not adjacent to v in D. A locally irreducible embedding
has at most two antifaces meeting at any vertex (which can be guaranteed by repeated
use of Lemma 2.1), and a vertex has type AB if it lies on both of the faces A and B. We
write |AB| for the number of vertices of type AB. The following is a representative lemma
assuring interlacement.

Lemma 2.3. Suppose that we have a locally irreducible embedding with distinct antifaces
A and B. Suppose that |AB| ≥ min(3k + 4, 4k + 3) and there exist vertices of type AP
and vertices of type BQ with P,Q /∈ {A,B} (possibly P = Q). Then there is a vertex of
type AB that is either interlaced on A with a vertex of type AP or interlaced on B with a
vertex of type BQ.

To prove Theorem 1.1, we use results such as those given above to successively re-
duce the number of antifaces in the orientable directed embedding of the digraph without
changing the given profaces.

The proof begins by applying results such as Lemma 2.2 so that no more than two
antifaces are incident with any one vertex. We can then create a touch graph, K. The
vertices of K are the antifaces. Each vertex v of D gives an edge of K: if v is incident with
only one antiface the edge is a loop at that vertex of K, and if v is incident with exactly
two antifaces the edge joins the corresponding vertices of K.

We use the structure of the touch graph K, in particular the existence and location
of its loops, to organize the necessary case work for the proof of Theorem 1.1. In each
situation density information allows us to apply results such as Lemma 2.3 to reduce the
number of antifaces. By repeated reductions we obtain an orientable embedding with one
or two antifaces and the prescribed set of profaces. If there is only one antiface it must be
bounded by a directed euler circuit.

Although our focus here has been on dense graphs, there are certainly also sparse
graphs that have bi-eulerian orientable embeddings, as for example in Figure 1. Theorem
2.4 below has an constructive proof with an algorithm that, given an eulerian digraph
with a directed euler circuit, produces a second eulerian circuit for the desired bi-eulerian
embedding. On the other hand, we have examples of 4-edge-connected, 4-regular graphs
with no bi-eulerian embeddings.

Theorem 2.4. Let D be an eulerian digraph with all vertices of degree congruent to 2
mod 4, and let T be any directed euler circuit of D. Then D has a bi-eulerian orientable
embedding with one of the faces bounded by T .
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