Refined list version of Hadwiger's Conjecture

(EXTENDED ABSTRACT)

Yangyan Gu^{*} Yiting Jiang[†] David R. Wood[‡] Xuding Zhu[§]

Abstract

Assume $\lambda = \{k_1, k_2, \dots, k_q\}$ is a partition of $k_{\lambda} = \sum_{i=1}^q k_i$. A λ -list assignment of G is a k_{λ} -list assignment L of G such that the colour set $\bigcup_{v \in V(G)} L(v)$ can be partitioned into $|\lambda| = q$ sets C_1, C_2, \dots, C_q such that for each i and each vertex v of G, $|L(v) \cap C_i| \geq k_i$. We say G is λ -choosable if G is L-colourable for any λ -list assignment L of G. The concept of λ -choosability is a refinement of choosability that puts k-choosability and k-colourability in the same framework. If $|\lambda|$ is close to k_{λ} , then λ -choosability. This paper studies Hadwiger's Conjecture in the context of λ -choosability. Hadwiger's Conjecture is equivalent to saying that every K_t -minor-free graph is $\{1 \star (t-1)\}$ -choosable for any positive integer t. We prove that for $t \geq 5$, for any partition λ of t-1 other than $\{1 \star (t-1)\}$, there is a K_t -minor-free graph that are not λ -choosable. We then construct several types of K_t -minor-free graphs that are not λ -choosable, where $k_{\lambda} - (t-1)$ gets larger as $k_{\lambda} - |\lambda|$ gets larger.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-071

1 Introduction

Given graphs H and G, we say H is a minor of G (or G has an H-minor) if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. Let K_t

^{*}School of Mathematical Sciences, Zhejiang Normal University, China. E-mail: yangyan@zjnu.edu.cn.

[†]School of Mathematical Sciences, Nanjing Normal University, China. E-mail: ytjiang@njnu.edu.cn. [‡]School of Mathematics, Monash University, Melbourne, Australia. E-mail: david.wood@monash.edu.

Research supported by the Australian Research Council.

[§]School of Mathematical Sciences, Zhejiang Normal University, China. E-mail: xdzhu@zjnu.edu.cn. Supported by National Natural Science Foundation of China grant NSFC 11971438 and U20A2068.

Conjecture 1 (Hadwiger's Conjecture). For every integer $t \ge 1$, every K_t -minor-free graph is (t-1)-colourable.

This conjecture is a deep generalization of the Four Colour Theorem, and has motivated many developments in graph colouring and graph minor theory. Hadwiger [8] and Dirac [6] independently showed that Hadwiger's Conjecture holds for $t \le 4$. Wagner [27] proved that for t = 5 the conjecture is equivalent to the Four Colour Theorem, which was subsequently proved by Appel, Haken and Koch [2,3] and Robertson, Sanders, Seymour and Thomas [20], both using extensive computer assistance. Robertson, Seymour and Thomas [21] went one step further and proved Hadwiger's Conjecture for t = 6, also by reducing it to the Four Colour Theorem. The conjecture for $t \ge 7$ is open and seems to be extremely challenging. For more on Hadwiger's Conjecture, see the survey of Seymour [23].

The evident difficulty of Hadwiger's Conjecture has inspired many researchers to study the following natural weakening (cf. [9, 10, 19]):

Conjecture 2 (Linear Hadwiger's Conjecture). There exists a constant C > 0 such that for every integer $t \ge 1$, every K_t -minor-free graph is Ct-colourable.

For many decades, the best general upper bound on the chromatic number of K_t minor-free graphs was $O(t\sqrt{\log t})$, which was proved independently by Kostochka [12, 13] and Thomason [24] in the 1980s. In 2019, Norine, Postle and Song [15] broke this barrier, and proved that the maximum chromatic number of K_t -minor-free graphs is in $O(t(\log t)^{1/4+o(1)})$. Following a series of improvements, [14, 16–18] the best known bound is $O(t\log \log t)$ due to Delcourt and Postle [5].

A list assignment of a graph G is a mapping L that assigns to each vertex v of G a set L(v) of permissible colours. An *L*-colouring of G is a proper colouring f of G such that for each vertex v of G, $f(v) \in L(v)$. We say G is *L*-colourable if G has an *L*-colouring. A *k*-list assignment of G is a list assignment L with $|L(v)| \ge k$ for each vertex v. We say G is *k*-choosable if G is *L*-colourable for any *k*-list assignment L of G. The choice-number of G is the minimum integer k such that G is *k*-choosable.

Hadwiger's Conjecture is also widely considered in the setting of list colourings. Voigt [26] constructed planar graphs (hence K_5 -minor-free) with choice-number 5. Hence the list version of Hadwiger's Conjecture is false. Nevertheless, the list version of Linear Hadwiger's Conjecture, proposed by Kawarabayashi and Mohar [10] in 2007, remains open.

Conjecture 3 (List Hadwiger's Conjecture). There exists a constant C > 0 such that for every integer $t \ge 1$, every K_t -minor-free graph is Ct-choosable.

The current state-of-the-art upper bound on the choice-number of K_t -minor-free graphs is $O(t(\log \log t)^6)$ [18]. If Conjecture 3 is true, then a natural problem is to determine the minimum value of C. Barát, Joret and Wood [4] constructed K_t -minor-free graphs that are not 4(t-3)/3-choosable, implying $C \ge \frac{4}{3}$ in Conjecture 3. Improving upon this result, Steiner [22] recently proved that the maximum choice-number of K_t -minor-free graphs is at least 2t - o(t), and hence $C \ge 2$ in Conjecture 3.

This paper considers Hadwiger's Conjecture in the context of λ -choosability, which was introduced by Zhu [28]. In general, k-colourability and k-choosability behave very differently. Indeed, bipartite graphs can have arbitrary large choice-number. λ -choosability is a refinement of the concept of choosability that puts k-choosability and k-colourability in the same framework and considers a more complex hierarchy of colouring parameters.

Definition 1. Let $\lambda = \{k_1, k_2, \dots, k_q\}$ be a multiset of positive integers. Let $k_{\lambda} = \sum_{i=1}^q k_i$ and $|\lambda| = q$. A λ -list assignment of G is a list assignment L such that the colour set $\bigcup_{v \in V(G)} L(v)$ can be partitioned into q sets C_1, C_2, \dots, C_q such that for each i and each vertex v of G, $|L(v) \cap C_i| \ge k_i$. We say G is λ -choosable if G is L-colourable for any λ -list assignment L of G.

Note that for each vertex v, $|L(v)| \ge \sum_{i=1}^{q} k_i = k_{\lambda}$. So a λ -list assignment L is a k_{λ} -list assignment with some restrictions on the set of possible lists.

For a positive integer a, let $m_{\lambda}(a)$ be the multiplicity of a in λ . If $m_{\lambda}(a) = m$, then instead of writing m times the integer a, we write $a \star m$. For example, $\lambda = \{1 \star k_1, 2 \star k_2, 3\}$ means that λ is the multiset consisting of k_1 copies of 1, k_2 copies of 2 and one copy of 3. If $\lambda = \{k\}$, then λ -choosability is the same as k-choosability; if $\lambda = \{1 \star k\}$, then λ -choosability is equivalent to k-colourability. So the concept of λ -choosability puts k-choosability and k-colourability in the same framework.

For $\lambda = \{k_1, k_2, \ldots, k_q\}$ and $\lambda' = \{k'_1, k'_2, \ldots, k'_p\}$, we say λ' is a *refinement* of λ if $p \ge q$ and there is a partition I_1, I_2, \ldots, I_q of $\{1, 2, \ldots, p\}$ such that $\sum_{j \in I_t} k'_j = k_t$ for $t = 1, 2, \ldots, q$. We say λ' is obtained from λ by *increasing* some parts if p = q and $k_t \le k'_t$ for $t = 1, 2, \ldots, q$. We write $\lambda \le \lambda'$ if λ' is obtained from a refinement of λ by increasing some parts. It follows from the definitions that if $\lambda \le \lambda'$, then every λ -choosable graph is λ' -choosable. Conversely, Zhu [28] proved that if $\lambda \nleq \lambda'$, then there is a λ -choosable graph that is not λ' -choosable. In particular, λ -choosability implies k_{λ} -colourability, and if $\lambda \ne \{1 * k_{\lambda}\}$, then there are k_{λ} -colourable graphs that are not λ -choosable.

All the partitions λ of a positive integer k are sandwiched between $\{k\}$ and $\{1 \star k\}$ in the above order. As observed above, $\{k\}$ -choosability is the same as k-choosability, and $\{1 \star k\}$ -choosability is equivalent to k-colourability. By considering each partition λ of k, λ -choosability provides a complex hierarchy of colouring parameters that interpolate between k-colourability and k-choosability.

The framework of λ -choosability provides room to explore strengthenings of colourability and choosability results. For example, Kermnitz and Voigt [11] proved that there are planar graphs that are not $\{1, 1, 2\}$ -choosable. This result strengthens Voigt's result that there are non-4-choosable planar graphs, and shows that the Four Colour Theorem is sharp in the sense that for any partition λ of 4 other than $\{1 \star 4\}$, there is a planar graph that is not λ -choosable. This paper considers Hadwiger's Conjecture in the context of λ -choosability.

2 Results

This paper constructs several examples of K_t -minor-free graphs that are not λ -choosable where $k_{\lambda} \geq t - 1$ and q is close to k_{λ} . In particular, if the multiplicity of 1 in λ is large enough, then the number of parts of λ will be close to k_{λ} .

First we strengthen the above-mentioned result of Kermnitz and Voigt to K_t -minor-free graphs for $t \ge 5$ as follows:

Theorem 1. For every integer $t \ge 5$, there exists a K_t -minor-free graph that is not $\{1 \star (t-3), 2\}$ -choosable.

If λ is a partition of t-1 other than $\{1 \star (t-1)\}$, then $\{1 \star (t-3), 2\}$ is a refinement of λ . Hence we have the following corollary.

Corollary 2. If λ is a partition of t-1 other than $\{1 \star (t-1)\}$, then there is a K_t -minor-free graph that is not λ -choosable.

For a multiset λ of positive integers, let $h(\lambda)$ be the maximum t such that every K_t -minor-free graph is λ -choosable. Since $K_{k_{\lambda}+1}$ is not k_{λ} -colourable and hence not λ -choosable, we know that $h(\lambda) \leq k_{\lambda} + 1$.

For a multiset λ of positive integers, $k_{\lambda} - |\lambda|$ measures the "distance" of λ -choosability from k_{λ} -colourability. Hadwiger's Conjecture says that if $k_{\lambda} - |\lambda| = 0$, then $h(\lambda) = k_{\lambda} + 1$. By Theorem 1, if $k_{\lambda} - |\lambda| \ge 1$, then $h(\lambda) \le k_{\lambda}$, provided that $k_{\lambda} \ge 5$. It seems natural that if $k_{\lambda} - |\lambda|$ gets bigger, then $k_{\lambda} - h(\lambda)$ also gets bigger, provided that k_{λ} is sufficiently large. The next result shows this is true for various λ .

Theorem 3. For each integer $a \ge 0$, there exists an integer $t_1 = t_1(a)$ such that for every integer $t \ge t_1$, there exists a K_t -minor-free graph that is not $\{1 \star (t-2a-6), 3a+6\}$ -choosable.

For the λ in Theorem 3, $k_{\lambda} = t+a$, $h(\lambda) \leq t-1$ and $|\lambda| = t-(2a+5)$. As $k_{\lambda}-|\lambda| = 3a+5$ tends to infinity, the difference $k_{\lambda}-h(\lambda) \geq a+1$ also tends to infinity, provided that $k_{\lambda} \geq \phi(k_{\lambda}-|\lambda|)$, where ϕ is a certain given function. It remains open whether such a conclusion holds for all λ . We conjecture a positive answer.

Conjecture 4. There are functions $\phi, \psi : \mathbb{N} \to \mathbb{N}$ for which the following hold:

- $\lim_{n\to\infty}\psi(n) = \infty$.
- For any multiset λ of positive integers, if $k_{\lambda} \ge \phi(k_{\lambda} |\lambda|)$, then $k_{\lambda} h(\lambda) \ge \psi(k_{\lambda} |\lambda|)$.

It is easy to see that if $k_{\lambda} - |\lambda| = b$, then $\{1 \star (k_{\lambda} - 2b'), 2 \star b'\}$ is a refinement of λ , where $b \ge b' \ge b/2$. Thus to prove Conjecture 4, it suffices to prove it for λ of the form $\{1 \star k_1, 2 \star k_2\}$.

Theorem 4 below shows that Conjecture 4 holds for any λ of the form $\{1 \star k_1, 3 \star k_2\}$.

Theorem 4. For each integer $a \ge 0$, there exists an integer $t_2 = t_2(a)$ such that for every integer $t \ge t_2$, there exists a K_t -minor-free graph that is not $\{1 \star (t - 5a - 9), 3 \star (2a + 3)\}$ -choosable.

As $|\lambda|$ becomes very small compared to k_{λ} , say $|\lambda|$ is constant and k_{λ} tends to infinity, then λ -choosability becomes very close to k_{λ} -choosability. The following result, which generalizes the main result of Steiner [22], deals with such λ .

Theorem 5. For every $\varepsilon \in (0,1)$ and $q \in \mathbb{N}$, there exists an integer $t_3 = t_3(q,\varepsilon)$ such that for every integer $t \ge t_3$ and $k_1, k_2, \ldots, k_q \in \mathbb{N}$ satisfying

$$\sum_{j=1}^{q} k_j \le (2-\varepsilon)t,$$

there exists a K_t -minor-free graph G that is not $\{k_1, k_2, \ldots, k_q\}$ -choosable.

The q = 1 case of above theorem was proved by Steiner [22].

Acknowledgements

This research was partially completed at the Structural Graph Theory Downunder (https://www.matrixinst.org.au/events/structural-graph-theory-downunder/) workshop at the Mathematical Research Institute MATRIX (November 2019). Xuding Zhu is partially supported by NSFC Grants 11971438, U20A2068, and ZJNSFC grant LD19A010001.

References

- N. Alon, Zs. Tuza, M. Voigt. Choosability and fractional chromatic numbers, Discrete Math. 165/166, 31–38, 1997.
- [2] K. Appel, W. Haken. Every planar map is four colourable. I. Discharging. Illinois J. Math., 21(3):429–490, 1977.
- K. Appel, W. Haken, J. Koch. Every planar map is four colourable. II. Reducibility. Illinois J. Math., 21(3):491–567, 1977.
- [4] J. Barát, G. Joret, D.R. Wood. Disproof of the list Hadwiger conjecture. Electronic J. Combin., 18(1), P232, 2011.
- [5] M. Delcourt, L. Postle. Reducing linear Hadwiger's conjecture to coloring small graphs. arXiv:2108.01633.
- [6] G. A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs. J. London Math. Soc., 27:85–92, 1952.
- [7] P. Erdős, A.L. Rubin, H. Taylor, *Choosability in graphs*, in: Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI, 1979, pp. 125–157.

- [8] H. Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich, 88:133–142, 1943.
- K. Kawarabayashi. On the connectivity of minimum and minimal counterexamples to Hadwiger's Conjecture. J. Combin. Theory Ser. B, 97(1):144–150, 2007.
- [10] K. Kawarabayashi, B. Mohar. Some recent progress and applications in graph minor theory. Graphs Combin., 23(1):1–46, 2007.
- [11] A. Kemnitz, M. Voigt. A note on non-4-list colourable planar graphs, Electron. J. Combin. 25(2), #P2.46, 2018.
- [12] A. V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices. Metody Diskret. Analiz., (38):37–58, 1982.
- [13] A. V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4(4):307–316, 1984.
- [14] S. Norin, L. Postle. Connectivity and choosability of graphs with no K_t minor. J. Combin. Theory, Ser. B 158(1):283–300, 2021.
- [15] S. Norin, L. Postle, and Z. Song. Breaking the degeneracy barrier for colouring graphs with no K_t minor. arXiv:1910.09378v2, 2019.
- [16] L. Postle. Further progress towards Hadwiger's conjecture. arXiv:2006.11798, 2020.
- [17] L. Postle. An even better density increment theorem and its application to Hadwiger's conjecture. arXiv:2006.14945, 2020.
- [18] L. Postle. Further progress towards the list and odd versions of Hadwiger's conjecture. arXiv:2010.05999, 2020.
- [19] B. Reed, P. Seymour. Fractional colouring and Hadwiger's conjecture. J. Combin. Theory Ser. B, 74(2):147–152, 1998.
- [20] N. Robertson, D.P. Sanders, P. Seymour, R. Thomas. The four-colour theorem. J. Combin. Theory Ser. B, 70(1):2–44, 1997.
- [21] N. Robertson, P. Seymour, R. Thomas. Hadwiger's conjecture for K₆-free graphs. Combinatorica, 13(3):279–361, 1993.
- [22] R. Steiner. Improved lower bound for the list chromatic number of graphs with no K_t minor. Combin. Probab. Comput. 32(2): 326–333, 2023.
- [23] P. Seymour, *Hadwiger's conjecture*. In: Open Problems in Mathematics, Eds. J. F. Nash Jr. and M. Th. Rassias, 417–437, Springer, 2016.

- [24] A. Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261–265, 1984.
- [25] V.G. Vizing, Coloring the vertices of a graph in prescribed colours, Diskret. Analiz 29 Metody Diskret. Anal. v Teorii Kodov i Shem (1976) 3–10, p. 101, (in Russian).
- [26] M. Voigt. List colourings of planar graphs. Discrete Math., 120 (1-3), 215–219, 1993.
- [27] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114:570–590, 1937.
- [28] X. Zhu, A refinement of choosability of graphs. J. Combin. Theory, Ser. B 141 (2020) 143–164.