3-UNIFORM LINEAR HYPERGRAPHS WITHOUT A LONG BERGE PATH

(EXTENDED ABSTRACT)

Ervin Győri^{*} Nika Salia[†]

Abstract

Extensions of the Erdős-Gallai theorem for general hypergraphs are well studied. In this work, we prove the extension of the Erdős-Gallai theorem for linear hypergraphs. In particular, we show that the number of hyperedges in an *n*-vertex 3-uniform linear hypergraph, without a Berge path of length k as a subgraph is at most $\frac{(k-1)}{6}n$ for $k \ge 4$. This is an extended abstract for EUROCOMB23 of the manuscript arXiv:2211.16184.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-074

1 Introduction

Finding the maximum number of edges in a graph with fixed order not containing another graph as a subgraph is a central problem in extremal combinatorics. This work considers problems where a path of fixed length is forbidden. This problem is well understood for graphs and r-uniform hypergraphs. The Erdős–Gallai theorem states that a graph of order n containing no path of length k as a subgraph contains at most $\frac{k-1}{2}n$ edges. This bound is sharp for infinitely many n. In particular, equality holds if and only if n is a multiple of k and the graph is isomorphic to the union of $\frac{n}{k}$ cliques of size k. This theorem was extended to r-uniform hypergraphs by Győri, Katona and Lemons [11]. In order to state their result, we will introduce the necessary definitions.

^{*}Alfréd Rényi Institute of Mathematics. E-mail: gyori.ervin@renyi.hu. Supported by the National Research, Development and Innovation Office – NKFIH, grant K116769, K132696 and SNN117879.

[†]E-mail: salianika@gmail.com. Supported by the National Research, Development, and Innovation Office – NKFIH, grant K132696.

For an integer r, a hypergraph \mathcal{H} is r-uniform if it is a family of r-element sets of finite family $V(\mathcal{H})$. We will use the following extension of this definition. For a set of integers R, a hypergraph \mathcal{H} is R-uniform if it is a family of sets of the finite family $V(\mathcal{H})$, such that the sizes of the sets are elements of R. Paths in hypergraphs can be defined in a number of ways. In this paper, we follow the definition of Berge [2]. A Berge path of length k in a hypergraph \mathcal{H} is an alternating sequence $v_1, h_1, v_2, \ldots, h_k, v_{k+1}$ of distinct vertices and hyperedges such that $\{v_i, v_{i+1}\} \subseteq h_i$ for all $i \in [k]$. A Berge cycle of length k is also defined similarly. The vertices $v_i, i \in [k+1]$, are defining vertices of the Berge path and the hyperedges $h_i, i \in [k]$, are defining hyperedges of the Berge path.

Theorem (Győri, Katona and Lemons [11]). Let \mathcal{H} be an *n*-vertex *r*-uniform hypergraph containing no Berge path of length *k* as a subgraph. Then if $r \ge k > 2$ then the number of hyperedges of \mathcal{H} is at most $\frac{k-1}{r+1}n$. If k > r+1 > 2 then the number of hyperedges of \mathcal{H} is at most $\frac{\binom{k}{r}}{k}n$.

The remaining case k = r + 1 was settled later in [3], the bound matches with the bound in Theorem 1 for k > r + 1 case. Forbidden path problems for connected graphs and hypergraphs including their stability versions are well studied, we refer interested readers to [16, 1, 13, 6, 15, 8, 7, 9]. Uniform hypergraphs with bounded circumference was studied in [5, 12] and references therein.

Here we introduce some necessary technical definitions. For a hypergraph \mathcal{H} let $E(\mathcal{H})$ be the hyperedge set and $V(\mathcal{H})$ be the vertex set, we denote their sizes by $e(\mathcal{H})$ and $v(\mathcal{H})$ accordingly. The hypergraph \mathcal{H} is linear if for any two distinct hyperedges h_1, h_2 we have $|h_1 \cap h_2| \leq 1$. For a vertex set $V, V \subseteq V(\mathcal{H})$, we define another hypergraph \mathcal{H}_V . Where $V(\mathcal{H}_V) = V$ and $E(\mathcal{H}_V) = \{h \setminus V : h \in E(\mathcal{H}), |h \setminus V| \geq 2\}$. Note that if \mathcal{H} is $\{2, 3\}$ -uniform linear hypergraph then \mathcal{H}_V is $\{2, 3\}$ -uniform linear hypergraph also. The induced hypergraph on the vertex set V is denoted by $\mathcal{H}[V]$. For a hypergraph \mathcal{H} we denote two-shadow of \mathcal{H} by $\partial\mathcal{H}$. It is a graph on the same vertex set as \mathcal{H} and the set of edges is $\{\{u, v\} : \{u, v\} \subseteq h \in E(\mathcal{H})\}$. The degree of a vertex v in a hypergraph \mathcal{H} is the number of hyperedges incident to the vertex v and is denoted by $d_{\mathcal{H}}(v)$. The minimum degree of a vertex in a hypergraph \mathcal{H} is denoted by $\delta_{\mathcal{H}}(v)$. For a hypergraph \mathcal{H} and sub-hypergraph \mathcal{H} is denoted by $N_{\mathcal{H}}(v)$. For a hypergraph \mathcal{H} and sub-hypergraph \mathcal{H}' we denote the hypergraph \mathcal{H} is denoted by $N_{\mathcal{H}}(v)$. For a hypergraph \mathcal{H} and sub-hypergraph \mathcal{H}' by $\mathcal{H} \setminus \mathcal{H}'$.

2 Main results

Recently Gyárfás, Ruszinkó, and Sárközy [10] initiated the study of three uniform linear hypergraphs not containing a linear path, a matching, and a small tree. In particular, they proved that the maximum number of hyperedges in an n vertex three uniform linear hypergraph not containing a linear path of k edges is 1.5nk. In this paper, we prove

the extension of Erdős-Gallai theorem for linear 3-uniform hypergraphs but instead of forbidding linear paths, we forbid Berge paths.

Theorem 1. Let \mathcal{H} be an *n* vertex 3-uniform linear hypergraph, containing no Berge path of length $k \geq 4$. Then the number of hyperedges in \mathcal{H} is at most $\frac{k-1}{6}n$.

Note that the upper bound is sharp for infinitely many k and n. In particular for all k for which there exists a Steiner Triple System (a 3-uniform hypergraph that every pair of vertices is covered by precisely one hyperedge) and n multiple of k, there exists an n-vertex 3-uniform linear hypergraph \mathcal{H} , containing no Berge path of length k with $\frac{k-1}{6}n$ hyperedges. Where \mathcal{H} is the disjoint union of $\frac{n}{k}$ copies of k-vertex Steiner Triple Systems.

In order to prove Theorem 1 with induction for k, we need a stronger and more general statement of the theorem.

Theorem 2. Let \mathcal{H} be an n vertex $\{2,3\}$ -uniform linear hypergraph, containing no Berge path of length $k \geq 4$. Then the number of edges in $\partial \mathcal{H}$ is at most $\frac{k-1}{2}n$.

Note that Theorem 1 is a direct corollary of Theorem 2. The following remark shows that the condition $k \leq 4$ in Theorem 2 is necessary since for k < 4 we have different bounds.

Remark. Let \mathcal{H} be an *n* vertex linear $\{2,3\}$ -uniform hypergraph, containing no Berge path of length k.

- If k = 1 then $e(\partial \mathcal{H}) = 0$;
- If k = 2 then $e(\partial \mathcal{H}) \leq v(\mathcal{H})$; The upper-bound is sharp and the equality is achieved if and only if is $v(\mathcal{H})$ multiple of 3 and \mathcal{H} is $\frac{v(\mathcal{H})}{3}$ independent hyperedges of size three.
- If k = 3 then $e(\partial \mathcal{H}) \leq 3\frac{v(\mathcal{H})-1}{2}$. The upper-bound is sharp and the equality is achieved if and only if $v(\mathcal{H})$ is odd and \mathcal{H} is $\frac{v(\mathcal{H})-1}{2}$ hyperedges of size three sharing the same vertex for every $n \geq 3$.

We find it challenging to obtain the precise bound for the problem initiated by Gyárfása, Ruszinkó, and Sárközy [10]. Consequently, we would like to put forth a natural conjecture.

Conjecture 3. Let \mathcal{H} be an *n* vertex 3-uniform linear hypergraph, containing no linear path of length $k \geq 5$. Then the number of hyperedges in \mathcal{H} is at most $\frac{2k-1}{6}n$.

Note that, this bound is sharp for infinitely many pairs of n and k. In particular for every k such that there exists a Steiner Triple System on 2k vertices and for every n multiple of 2k. The hypergraph containing $\frac{n}{2k}$ copies of a Steiner Triple System on 2k vertices achieves the desired bound.

3 Proof of Theorem 2

For the full proof see manuscript [14].

We prove Theorem 2 by induction on k. At first, we consider the base case when k = 4. We may assume \mathcal{H} is a connected hypergraph since the upper bound is linear for n and the additive constant is 0. If \mathcal{H} is Berge cycle free then $e(\partial \mathcal{H}) \leq \frac{3(n-1)}{2}$ (the upper-bound is attained by hyperedges of size three sharing a fixed vertex). If \mathcal{H} contains a Berge cycle it must be a Berge cycle of length 3 or 4 since it is a linear hypergraph. If \mathcal{H} contains Berge cycle of length 4 then by connectivity $v(\mathcal{H}) \leq 4$, hence $e(\mathcal{H}) \leq \binom{4}{2} = \frac{3n}{2}$. If \mathcal{H} contains a cycle of length 3, we denote it by C_3 . Cycle C_3 is a linear cycle since \mathcal{H} is a linear hypergraph. If all of the hyperedges of C_3 are size three then by the connectivity of \mathcal{H} we have $\mathcal{H} = C_3$ and $e(\partial \mathcal{H}) = 9 = \frac{3n}{2}$. If two of the hyperedges are size three then by the connectivity of the connectivity of \mathcal{H} we have $\mathcal{H} = C_3$ and $e(\partial \mathcal{H}) = 9 = \frac{3n}{2}$. So the base case k = 4 is done. Let \mathcal{H} be an *n*-vertex linear $\{2,3\}$ -uniform hypergraph containing no Berge path of

Let \mathcal{H} be an *n*-vertex linear $\{2,3\}$ -uniform hypergraph containing no Berge path of length k for some integer k > 4. Suppose by way of contradiction that $e(\partial \mathcal{H}) > \frac{n(k-1)}{2}$. Without loss of generality, we may assume n is minimal, in particular, we assume all linear $\{2,3\}$ -uniform hypergraphs containing no Berge path of length k with n' vertices, n' < n, contain at most $\frac{n(k-1)}{2}$ edges in the shadow. Note that from the minimality of n we have the hypergraph \mathcal{H} is connected. Even more, for each vertex v, $\mathcal{H}_{V(\mathcal{H})\setminus\{v\}}$ contains no Berge path of length k, thus from the minimality of n we have $d_{\partial \mathcal{H}}(v) > \frac{k-1}{2}$. Hence we have $\delta_{\partial \mathcal{H}}(v) \geq \left\lceil \frac{k}{2} \right\rceil$. Note that since $e(\partial \mathcal{H}) > \frac{n(k-1)}{2}$ the longest path of \mathcal{H} is length k-1 by the induction hypothesis.

We omit the proof of the following Claims.

Claim 4.
$$c(\mathcal{H}) \geq \left|\frac{k+1}{2}\right|$$

Let $C_{\ell} := v_1, h_1, v_2, h_2, \dots, h_{\ell-1}, v_{\ell}, h_{\ell}, v_1$ be a longest Berge cycle of \mathcal{H} . Some C_{ℓ} defining hyperedges h_i are size three, let us denote the third vertex by x_i , that is $h_i = \{v_i, v_{i+1}, x_i\}$ for hyperedges of size three. From Claim 4 we have $\ell \geq \left\lceil \frac{k+1}{2} \right\rceil$. Let us denote the hypergraph $\mathcal{H}_{V(\mathcal{H})\setminus\{v_i:i\in[\ell]\}}$ by \mathcal{H}' .

Claim 5. The hypergraph \mathcal{H}' is $\mathcal{BP}_{k-\ell}$ -free.

If $k - \ell \geq 4$ then by Claim 5 and induction hypothesis for hypergraph \mathcal{H}' we have

$$e(\partial \mathcal{H}') \le \frac{(n-\ell)(k-\ell-1)}{2}.$$
(1)

For a vertex $u \in V(\mathcal{H}')$ we define the set $S(u) := N_{\mathcal{H} \setminus C_{\ell}}(u) \cap V(C_{\ell})$, $L(u) := \{v_i : u = x_i\}$ and $R(u) := \{v_{i+1} : u = x_i\}$. For a vertex set S such that $S \subseteq V(C_{\ell})$ let S^+ be a set Sshifted right, in particular $S^+ := \{v_i : v_{i-1} \in S\}$, the indices are taken module ℓ . Similarly we definite S^- , in particular S^- is a set for which $S = (S^-)^+$. Naturally we denote the set $(S^-)^-$ with S^{--} and the set $(S^+)^+$ with S^{++} . Note that $L(u)^+ = R(u)$, thus the size of L(u) and R(u) are the same. 3-uniform linear hypergraphs without a long Berge path

In what follows we are going to estimate the number of edges in $\partial \mathcal{H}$, in the following way

$$e(\partial \mathcal{H}) = e(\partial \mathcal{H}_{V(C_{\ell})}) + e_{\partial \mathcal{H}}(V(C_{\ell}), V(\mathcal{H}')) + e(\partial \mathcal{H}').$$
(2)

Noting that $e_G(A, B)$ denotes the number of edges between vertex set A and B in G. In most cases, we will use a naive upper bound for $e(\partial \mathcal{H}_{V(C_\ell)}) \leq {\ell \choose 2}$. For $k - \ell \geq 4$, we estimate $e(\partial \mathcal{H}')$ by the induction hypotheses as in Equation 1. We estimate the number of edges from $V(\mathcal{H}')$ to $V(C_\ell)$, for each vertex $u \in V(\mathcal{H}')$ in $\partial \mathcal{H}$. In particular the number of adjacent vertices to u is |L(u)| + |R(u)| + |S(u)|. Since each defining hyperedge of C_ℓ provides at most two edges crossing between the vertices $V(\mathcal{H}')$ and $V(C_\ell)$ we have a naive upper bound for $e_{\partial \mathcal{H}}(V(C_\ell), V(\mathcal{H}'))$ which is enough for most of the cases.

$$e_{\partial \mathcal{H}}(V(C_{\ell}), V(\mathcal{H}')) \le 2\ell + \sum_{u \in V(\mathcal{H}')} |S(u)|.$$
(3)

Since C_{ℓ} is a longest Berge cycle of \mathcal{H} we are able to get an upper bound for |S(u)| from the following claim.

Claim 6. For a vertex $u \in V(\mathcal{H}')$ we have $(S(u) \cup L(u)) \cap S(u)^- = \emptyset$.

Note that if a vertex $v_i \in S(u)$ then $v_{i+1} \notin S(u)$ from Claim 6. Thus we have $|S(u)| \leq \frac{\ell}{2}$ for each vertex u of \mathcal{H}' . Therefore $e_{\partial \mathcal{H}}(V(C_\ell), V(\mathcal{H}')) \leq 2\ell + \frac{\ell}{2}(n-\ell)$ from Equation 3. If $k-\ell \geq 4$ then by Equation 2 and 1 we have a contradiction

$$e(\partial \mathcal{H}) \le \binom{\ell}{2} + 2\ell + \frac{\ell(n-\ell)}{2} + \frac{(n-\ell)(k-\ell-1)}{2} = \frac{n(k-1)}{2} + \frac{\ell}{2}(\ell+4-k) \le \frac{n(k-1)}{2}.$$

We study the rest of the possible values of ℓ separately, $\ell \in \{k-3, k-2, k-1, k\}$. Let x be the number of defining hyperedges of C_{ℓ} incident to a vertex of \mathcal{H}' . Note that $0 \leq x \leq \ell$.

If $\ell = k$ then $C_{\ell} = \mathcal{H}$ otherwise we have a Berge path of length k in \mathcal{H} by the connectivity of \mathcal{H} . Thus we have $n = k = \ell$ and

$$e(\partial \mathcal{H}) \le \binom{\ell}{2} = \frac{n(k-1)}{2}.$$

If $\ell = k - 1$ then \mathcal{H}' contains no hyperedge by Claim 5. Since \mathcal{H} does not contain a Berge path of length k, if a hyperedge h_i adjacent to a vertex from $V(\mathcal{H}')$, then neither v_i nor v_{i+1} is a vertex of S(u), for all $u \in V(\mathcal{H})$. In particular for $u, u' \in V(\mathcal{H}')$ we have $L(u) \cap (S(u))^- = \emptyset$. By this observation and Claim 6 every vertex of $V(\mathcal{H}')$ is adjacent to at most $\frac{k-1-x}{2}$ vertices of C_ℓ with a non-defining hyperedge, that is $|S(u)| \leq \frac{k-1-x}{2}$. Thus by Equation 2 we have

$$e(\partial \mathcal{H}) \le \binom{k-1}{2} + 2x + \frac{k-1-x}{2}(n-(k-1)).$$

Hence if $n \ge k+2$ or n = k+1 and $x \le \frac{k-1}{2}$ then we have $e(\partial \mathcal{H}) \le \frac{n(k-1)}{2}$, since $x \le k-1$. As $e(\partial \mathcal{H}) > \frac{n(k-1)}{2}$ we have $n \ge k+1$. If n = k + 1 and $x > \frac{k-1}{2}$ then there are two C_{ℓ} non-defining hyperedges h_i and h_{i+1} such that $\{x_i, x_{i+1}\} = V(\mathcal{H}')$. Since \mathcal{H} does not contain a Berge path of length k, if a defining vertex of C_{ℓ} is incident to both vertices of \mathcal{H}' , either both incidences are from a defining hyperedge or both incidences are from a non-defining hyperedge. If v_j is incident to both vertices of \mathcal{H}' with h_{j-1} and h_j such that $j \neq i-1, i, i+1$ then v_j is not incident to v_{i+1} . Otherwise, if there is a hyperedge f' incident to v_j and v_{j+1} , then it is a non-defining hyperedge and the following is a Berge path or a Berge cycle of length k,

$$x_{i+1}, h_{i+1}, v_{i+2}, \ldots, v_j, f', v_{i+1}, h_i, v_i, \ldots, v_{j+1}, h_j, x_j.$$

If a vertex v_j is adjacent to x_1 or x_2 with a non-defining hyperedge then v_{j+1} is not adjacent to a vertex from $\{x_1, x_2\}$. Thus for each vertex $v_j \in V(C_\ell)$, $j \notin \{i-1, i, i+1\}$, either there is at most one vertex from $V(\mathcal{H}')$ adjacent to it, or if there are two then $v_j v_{i+1}$ is not an edge of $\partial \mathcal{H}$ or v_{j+1} is not adjacent to any vertex of $V(\mathcal{H}')$. Note that if there is a defining hyperedge of C_ℓ not incident to a vertex of \mathcal{H}' then we may choose i such that i-1 has exactly one neighbor in $V(\mathcal{H}')$. If all defining hyperedges of C_ℓ are incident to a vertex of \mathcal{H}' then we may choose any i from [k-1]. Thus we have a contradiction from Equation 2

$$e(\partial \mathcal{H}) \le \binom{k-1}{2} + k - 1 + 2 \le \frac{n(k-1)}{2}.$$

The proof of remaining cases $\ell = k - 2$ and $\ell = k - 3$ involves more structural study and can be seen in the original manuscript.

References

- [1] Paul N Balister, E Győri, Jenő Lehel, and Richard H Schelp. Connected graphs without long paths. *Discrete Mathematics*, 308(19):4487–4494, 2008.
- [2] Claude Berge. *Graphs and hypergraphs*. North-Holland, 1973.
- [3] Akbar Davoodi, Ervin Győri, Abhishek Methuku, and Casey Tompkins. An Erdős-Gallai type theorem for uniform hypergraphs. *European Journal of Combinatorics*, 69:159–162, 2018.
- [4] Zoltán Füredi, Alexandr Kostochka, and Ruth Luo. Avoiding long Berge cycles ii, exact bounds for all *n. arXiv preprint arXiv:1807.06119*, 2018.
- [5] Zoltán Füredi, Alexandr Kostochka, and Ruth Luo. Avoiding long Berge cycles. Journal of Combinatorial Theory, Series B, 137:55–64, 2019.
- [6] Zoltán Füredi, Alexandr Kostochka, and Ruth Luo. On 2-connected hypergraphs with no long cycles. arXiv preprint arXiv:1901.11159, 2019.

- [7] Zoltán Füredi, Alexandr Kostochka, Ruth Luo, and Jacques Verstraëte. Stability in the Erdős–Gallai theorem on cycles and paths, II. *Discrete Mathematics*, 341(5):1253– 1263, 2018.
- [8] Zoltán Füredi, Alexandr Kostochka, and Jacques Verstraëte. Stability in the Erdős– Gallai theorems on cycles and paths. *Journal of Combinatorial Theory, Series B*, 121:197–228, 2016.
- [9] Dániel Gerbner, Dániel Nagy, Balázs Patkós, Nika Salia, and Máté Vizer. Stability of extremal connected hypergraphs avoiding Berge-paths. arXiv preprint arXiv:2008.02780, 2020.
- [10] András Gyárfás, Miklós Ruszinkó, and Gábor N Sárközy. Linear Turán numbers of acyclic triple systems. European Journal of Combinatorics, 99:103435, 2022.
- [11] Ervin Győri, Gyula Y Katona, and Nathan Lemons. Hypergraph extensions of the Erdős-Gallai theorem. European Journal of Combinatorics, 58:238–246, 2016.
- [12] Ervin Győri, Nathan Lemons, Nika Salia, and Oscar Zamora. The structure of hypergraphs without long Berge cycles. *Journal of Combinatorial Theory, Series B*, 2020.
- [13] Ervin Győri, Abhishek Methuku, Nika Salia, Casey Tompkins, and Máté Vizer. On the maximum size of connected hypergraphs without a path of given length. *Discrete Mathematics*, 341(9):2602–2605, 2018.
- [14] Ervin Győri and Nika Salia. Linear three-uniform hypergraphs with no berge path of given length. arXiv preprint arXiv:2211.16184, 2022.
- [15] Ervin Győri, Nika Salia, and Oscar Zamora. Connected hypergraphs without long berge-paths. European Journal of Combinatorics, 96:103353, 2021.
- [16] GN Kopylov. On maximal paths and cycles in a graph. In *Doklady Akademii Nauk*, volume 234, pages 19–21. Russian Academy of Sciences, 1977.
- [17] Alexandr Kostochka and Ruth Luo. On r-uniform hypergraphs with circumference less than r. Discrete Applied Mathematics, 276:69–91, 2020.