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Abstract

Extensions of the Erdős-Gallai theorem for general hypergraphs are well stud-
ied. In this work, we prove the extension of the Erdős-Gallai theorem for linear
hypergraphs. In particular, we show that the number of hyperedges in an n-vertex 3-
uniform linear hypergraph, without a Berge path of length k as a subgraph is at most
(k−1)

6 n for k ≥ 4. This is an extended abstract for EUROCOMB23 of the manuscript
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1 Introduction
Finding the maximum number of edges in a graph with fixed order not containing another
graph as a subgraph is a central problem in extremal combinatorics. This work considers
problems where a path of fixed length is forbidden. This problem is well understood for
graphs and r-uniform hypergraphs. The Erdős–Gallai theorem states that a graph of order
n containing no path of length k as a subgraph contains at most k−1

2
n edges. This bound

is sharp for infinitely many n. In particular, equality holds if and only if n is a multiple
of k and the graph is isomorphic to the union of n

k
cliques of size k. This theorem was

extended to r-uniform hypergraphs by Győri, Katona and Lemons [11]. In order to state
their result, we will introduce the necessary definitions.
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For an integer r, a hypergraph H is r-uniform if it is a family of r-element sets of finite
family V (H). We will use the following extension of this definition. For a set of integers R,
a hypergraph H is R-uniform if it is a family of sets of the finite family V (H), such that
the sizes of the sets are elements of R. Paths in hypergraphs can be defined in a number
of ways. In this paper, we follow the definition of Berge [2]. A Berge path of length k in
a hypergraph H is an alternating sequence v1, h1, v2, . . . , hk, vk+1 of distinct vertices and
hyperedges such that {vi, vi+1} ⊆ hi for all i ∈ [k]. A Berge cycle of length k is also
defined similarly. The vertices vi, i ∈ [k + 1], are defining vertices of the Berge path and
the hyperedges hi, i ∈ [k], are defining hyperedges of the Berge path.

Theorem (Győri, Katona and Lemons [11]). Let H be an n-vertex r-uniform hypergraph
containing no Berge path of length k as a subgraph. Then if r ≥ k > 2 then the number of
hyperedges of H is at most k−1

r+1
n. If k > r + 1 > 2 then the number of hyperedges of H is

at most (kr)
k
n.

The remaining case k = r + 1 was settled later in [3], the bound matches with the
bound in Theorem 1 for k > r + 1 case. Forbidden path problems for connected graphs
and hypergraphs including their stability versions are well studied, we refer interested
readers to [16, 1, 13, 6, 15, 8, 7, 9]. Uniform hypergraphs with bounded circumference was
studied in [5, 12] and references therein.

Here we introduce some necessary technical definitions. For a hypergraph H let E(H)
be the hyperedge set and V (H) be the vertex set, we denote their sizes by e(H) and v(H)
accordingly. The hypergraph H is linear if for any two distinct hyperedges h1, h2 we have
|h1 ∩ h2| ≤ 1. For a vertex set V , V ⊆ V (H), we define another hypergraph HV . Where
V (HV ) = V and E(HV ) = {h \ V : h ∈ E(H), |h \ V | ≥ 2}. Note that if H is {2, 3}-
uniform linear hypergraph then HV is {2, 3}-uniform linear hypergraph also. The induced
hypergraph on the vertex set V is denoted by H[V ]. For a hypergraph H we denote two-
shadow of H by ∂H. It is a graph on the same vertex set as H and the set of edges is
{{u, v} : {u, v} ⊆ h ∈ E(H)}. The degree of a vertex v in a hypergraph H is the number
of hyperedges incident to the vertex v and is denoted by dH(v). The minimum degree of
a vertex in a hypergraph H is denoted by δH(v). The circumference of H is the length of
the longest Berge cycle in a hypergraph H and is denoted by c(H). The neighborhood of a
vertex v in a hypergraph H is denoted by NH(v). For a hypergraph H and sub-hypergraph
H′ we denote the hypergraph on the same vertex set as H and hyperedge set E(H)\E(H′)
by H \H′.

2 Main results
Recently Gyárfás, Ruszinkó, and Sárközy [10] initiated the study of three uniform linear
hypergraphs not containing a linear path, a matching, and a small tree. In particular,
they proved that the maximum number of hyperedges in an n vertex three uniform linear
hypergraph not containing a linear path of k edges is 1.5nk. In this paper, we prove
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the extension of Erdős-Gallai theorem for linear 3-uniform hypergraphs but instead of
forbidding linear paths, we forbid Berge paths.

Theorem 1. Let H be an n vertex 3-uniform linear hypergraph, containing no Berge path
of length k ≥ 4. Then the number of hyperedges in H is at most k−1

6
n.

Note that the upper bound is sharp for infinitely many k and n. In particular for
all k for which there exists a Steiner Triple System (a 3-uniform hypergraph that every
pair of vertices is covered by precisely one hyperedge) and n multiple of k, there exists an
n-vertex 3-uniform linear hypergraph H, containing no Berge path of length k with k−1

6
n

hyperedges. Where H is the disjoint union of n
k
copies of k-vertex Steiner Triple Systems.

In order to prove Theorem 1 with induction for k, we need a stronger and more general
statement of the theorem.

Theorem 2. Let H be an n vertex {2, 3}-uniform linear hypergraph, containing no Berge
path of length k ≥ 4. Then the number of edges in ∂H is at most k−1

2
n.

Note that Theorem 1 is a direct corollary of Theorem 2. The following remark shows
that the condition k ≤ 4 in Theorem 2 is necessary since for k < 4 we have different
bounds.

Remark. Let H be an n vertex linear {2, 3}-uniform hypergraph, containing no Berge path
of length k.

• If k = 1 then e(∂H) = 0;

• If k = 2 then e(∂H) ≤ v(H); The upper-bound is sharp and the equality is achieved if
and only if is v(H) multiple of 3 and H is v(H)

3
independent hyperedges of size three.

• If k = 3 then e(∂H) ≤ 3v(H)−1
2

. The upper-bound is sharp and the equality is achieved
if and only if v(H) is odd and H is v(H)−1

2
hyperedges of size three sharing the same

vertex for every n ≥ 3.

We find it challenging to obtain the precise bound for the problem initiated by Gyárfása,
Ruszinkó, and Sárközy [10]. Consequently, we would like to put forth a natural conjecture.

Conjecture 3. Let H be an n vertex 3-uniform linear hypergraph, containing no linear
path of length k ≥ 5. Then the number of hyperedges in H is at most 2k−1

6
n.

Note that, this bound is sharp for infinitely many pairs of n and k. In particular
for every k such that there exists a Steiner Triple System on 2k vertices and for every
n multiple of 2k. The hypergraph containing n

2k
copies of a Steiner Triple System on 2k

vertices achieves the desired bound.
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3 Proof of Theorem 2
For the full proof see manuscript [14].

We prove Theorem 2 by induction on k. At first, we consider the base case when k = 4.
We may assume H is a connected hypergraph since the upper bound is linear for n and
the additive constant is 0. If H is Berge cycle free then e(∂H) ≤ 3(n−1)

2
(the upper-bound

is attained by hyperedges of size three sharing a fixed vertex). If H contains a Berge cycle
it must be a Berge cycle of length 3 or 4 since it is a linear hypergraph. If H contains
Berge cycle of length 4 then by connectivity v(H) ≤ 4, hence e(H) ≤

(
4
2

)
= 3n

2
. If H

contains a cycle of length 3, we denote it by C3. Cycle C3 is a linear cycle since H is a
linear hypergraph. If all of the hyperedges of C3 are size three then by the connectivity of
H we have H = C3 and e(∂H) = 9 = 3n

2
. If two of the hyperedges are size three then by

the connectivity of H we have H = C3 and e(∂H) = 7 < 3n
2
. If at most one hyperedge is

size three then we have e(∂H) ≤ 3n
2
. So the base case k = 4 is done.

Let H be an n-vertex linear {2, 3}-uniform hypergraph containing no Berge path of
length k for some integer k > 4. Suppose by way of contradiction that e(∂H) > n(k−1)

2
.

Without loss of generality, we may assume n is minimal, in particular, we assume all linear
{2, 3}-uniform hypergraphs containing no Berge path of length k with n′ vertices, n′ < n,
contain at most n(k−1)

2
edges in the shadow. Note that from the minimality of n we have

the hypergraph H is connected. Even more, for each vertex v, HV (H)\{v} contains no Berge
path of length k, thus from the minimality of n we have d∂H(v) > k−1

2
. Hence we have

δ∂H(v) ≥
⌈
k
2

⌉
. Note that since e(∂H) > n(k−1)

2
the longest path of H is length k− 1 by the

induction hypothesis.
We omit the proof of the following Claims.

Claim 4. c(H) ≥
⌈
k+1
2

⌉
.

Let C` := v1, h1, v2, h2, . . . h`−1, v`, h`, v1 be a longest Berge cycle of H. Some C` defining
hyperedges hi are size three, let us denote the third vertex by xi, that is hi = {vi, vi+1, xi} for
hyperedges of size three. From Claim 4 we have ` ≥

⌈
k+1
2

⌉
. Let us denote the hypergraph

HV (H)\{vi:i∈[`]} by H′.

Claim 5. The hypergraph H′ is BPk−`-free.

If k − ` ≥ 4 then by Claim 5 and induction hypothesis for hypergraph H′ we have

e(∂H′) ≤ (n− `)(k − `− 1)

2
. (1)

For a vertex u ∈ V (H′) we define the set S(u) := NH\C`
(u) ∩ V (C`), L(u) := {vi : u = xi}

and R(u) := {vi+1 : u = xi}. For a vertex set S such that S ⊆ V (C`) let S+ be a set S
shifted right, in particular S+ := {vi : vi−1 ∈ S}, the indices are taken module `. Similarly
we definite S−, in particular S− is a set for which S = (S−)+. Naturally we denote the set
(S−)− with S−− and the set (S+)+ with S++. Note that L(u)+ = R(u), thus the size of
L(u) and R(u) are the same.
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In what follows we are going to estimate the number of edges in ∂H, in the following
way

e(∂H) = e(∂HV (C`)) + e∂H(V (C`), V (H′)) + e(∂H′). (2)

Noting that eG(A,B) denotes the number of edges between vertex set A and B in G. In
most cases, we will use a naive upper bound for e(∂HV (C`)) ≤

(
`
2

)
. For k − ` ≥ 4, we

estimate e(∂H′) by the induction hypotheses as in Equation 1. We estimate the number
of edges from V (H′) to V (C`), for each vertex u ∈ V (H′) in ∂H. In particular the number
of adjacent vertices to u is |L(u)| + |R(u)| + |S(u)|. Since each defining hyperedge of C`

provides at most two edges crossing between the vertices V (H′) and V (C`) we have a naive
upper bound for e∂H(V (C`), V (H′)) which is enough for most of the cases.

e∂H(V (C`), V (H′)) ≤ 2`+
∑

u∈V (H′)

|S(u)| . (3)

Since C` is a longest Berge cycle of H we are able to get an upper bound for |S(u)|
from the following claim.

Claim 6. For a vertex u ∈ V (H′) we have (S(u) ∪ L(u)) ∩ S(u)− = ∅.

Note that if a vertex vi ∈ S(u) then vi+1 /∈ S(u) from Claim 6. Thus we have |S(u)| ≤ `
2

for each vertex u of H′. Therefore e∂H(V (C`), V (H′)) ≤ 2`+ `
2
(n− `) from Equation 3. If

k − ` ≥ 4 then by Equation 2 and 1 we have a contradiction

e(∂H) ≤
(
`

2

)
+2`+

`(n− `)
2

+
(n− `)(k − `− 1)

2
=
n(k − 1)

2
+
`

2
(`+4− k) ≤ n(k − 1)

2
.

We study the rest of the possible values of ` separately, ` ∈ {k−3, k−2, k−1, k}. Let x be
the number of defining hyperedges of C` incident to a vertex of H′. Note that 0 ≤ x ≤ `.

If ` = k then C` = H otherwise we have a Berge path of length k inH by the connectivity
of H. Thus we have n = k = ` and

e(∂H) ≤
(
`

2

)
=
n(k − 1)

2
.

If ` = k − 1 then H′ contains no hyperedge by Claim 5. Since H does not contain a
Berge path of length k, if a hyperedge hi adjacent to a vertex from V (H′), then neither
vi nor vi+1 is a vertex of S(u), for all u ∈ V (H). In particular for u, u′ ∈ V (H′) we have
L(u)∩ (S(u))− = ∅. By this observation and Claim 6 every vertex of V (H′) is adjacent to
at most k−1−x

2
vertices of C` with a non-defining hyperedge, that is |S(u)| ≤ k−1−x

2
. Thus

by Equation 2 we have

e(∂H) ≤
(
k − 1

2

)
+ 2x+

k − 1− x
2

(n− (k − 1)).

Hence if n ≥ k+2 or n = k+1 and x ≤ k−1
2

then we have e(∂H) ≤ n(k−1)
2

, since x ≤ k−1.
As e(∂H) > n(k−1)

2
we have n ≥ k + 1.
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If n = k + 1 and x > k−1
2

then there are two C` non-defining hyperedges hi and hi+1

such that {xi, xi+1} = V (H′). Since H does not contain a Berge path of length k, if a
defining vertex of C` is incident to both vertices of H′, either both incidences are from a
defining hyperedge or both incidences are from a non-defining hyperedge. If vj is incident
to both vertices of H′ with hj−1 and hj such that j 6= i−1, i, i+1 then vj is not incident to
vi+1. Otherwise, if there is a hyperedge f ′ incident to vj and vj+1, then it is a non-defining
hyperedge and the following is a Berge path or a Berge cycle of length k,

xi+1, hi+1, vi+2, . . . , vj, f
′, vi+1, hi, vi, . . . , vj+1, hj, xj.

If a vertex vj is adjacent to x1 or x2 with a non-defining hyperedge then vj+1 is not adjacent
to a vertex from {x1, x2}. Thus for each vertex vj ∈ V (C`), j /∈ {i−1, i, i+1}, either there
is at most one vertex from V (H′) adjacent to it, or if there are two then vjvi+1 is not an
edge of ∂H or vj+1 is not adjacent to any vertex of V (H′). Note that if there is a defining
hyperedge of C` not incident to a vertex of H′ then we may choose i such that i − 1 has
exactly one neighbor in V (H′). If all defining hyperedges of C` are incident to a vertex of
H′ then we may choose any i from [k− 1]. Thus we have a contradiction from Equation 2

e(∂H) ≤
(
k − 1

2

)
+ k − 1 + 2 ≤ n(k − 1)

2
.

The proof of remaining cases ` = k − 2 and ` = k − 3 involves more structural study
and can be seen in the original manuscript.
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