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Abstract

Fractional isomorphism is a well-studied relaxation of graph isomorphism with a
very rich theory. Grebík and Rocha [Combinatorica 42, pp 365–404 (2022)] devel-
oped a concept of fractional isomorphism for graphons and proved that it enjoys an
analogous theory. In particular, they proved that if G1, G2, . . . converge to a graphon
U , H1, H2, . . . converge to a graphon W and each Gi is fractionally isomorphic to Hi,
then U is fractionally isomorphic to W . Answering the main question from ibid, we
prove the converse of the statement above: If U and W are fractionally isomorphic
graphons, then there exist sequences of graphs G1, G2, . . . and H1, H2, . . . which con-
verge to U and W respectively and for which each Gi is fractionally isomorphic to
Hi. As an easy but convenient corollary of our methods, we get that every regular
graphon can be approximated by regular graphs.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-080

This is an extended abstract to a preprint [arXiv:2210.14097] which is currently being
submitted to a journal for publication.
∗Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 00,

Praha 8, Czech Republic. E-mail: hladky@cs.cas.cz. Research supported by Czech Science Foundation
Project GX21-21762X and with institutional support RVO:67985807.
†Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 00,

Praha 8, Czech Republic. E-mail: hng@cs.cas.cz. Research supported by Czech Science Foundation
Project GX21-21762X and with institutional support RVO:67985807.

579



Fractionally isomorphic graphs and graphons 580

1 Introduction and the statement of the main result
This work connects the notions of fractional isomorphism for graphs and for graphons.
The former was introduced by Tinhofer in 1986 [7], and subsequently several important
equivalent characterizations were added by Ramana, Scheinerman, and Ullman [6], by
Dvořák [2] and by Dell, Grohe, and Rattan [1]. We recall these characterizations. Of
these, (FGI-2) and (FGI-3) play an important role in our contribution to the corresponding
theory for graphons. The remaining two are included only to illustrate the mathematical
beauty of the theory, which has important applications in designing fast algorithms for
fractional isomorphism testing (which is often used as a proxy to isomorphism testing).

Suppose that G and H are two graphs on the same vertex set V .

(FGI-1) Characterization via bistochastic matrices. G and H are fractionally isomorphic if
and only if there is a bistochastic matrix S such that for the adjacency matrices AG
and AH of the respective graphs we have SAG = AHS.

(FGI-2) Characterization via counting trees. For two graphs F and J , let hom(F, J) be
the number of homomorphisms of F in J . The graphs G and H are fractionally
isomorphic if and only if hom(T,G) = hom(T,H) for every tree T .

(FGI-3) Characterization via equitable partitions. Let V (F ) = Y1 t . . . t Y` be a partition of
the vertex set of a graph F into nonempty sets. We say that E = (Y1, . . . , Y`) is an
equitable partition if there are numbers (di,j)i,j∈[`] such that for every i, j ∈ [`] and
every v ∈ Yi we have

di,j = degF (v, Yj) . (1)

We call the pair (|Yi|)i∈[`] and (di,j)i,j∈[`] the parameters of E . The graphs G and H
are fractionally isomorphic if and only if there are equitable partitions EG of G and
EH of H that have the same parameters.

(FGI-4) Characterization via iterated degree sequences. For every vertex v ∈ V first define
s1,G(v) := degG(v) and then inductively define multisets s`+1,G(v) := {s`,G(u) : u ∈
NG(v)}. The `-th iteration of the degree sequence of G is the (multiset) collection
S`,G = {s`,G(v) : v ∈ V }. We can make analogous definitions for H. The graphs G
and H are fractionally isomorphic if and only if S`,G = S`,H for every ` ∈ N.

Let us now move to graphons. The basic theory of graphons and their role as limits
of sequences of dense graphs is by now well-understood. We refer to [5] for the basics and
borrow notation from there. Unless stated otherwise, the ground space for graphons is
the square of a standard Borel space (Ω,B) equipped with a Borel probability measure
π. Grebík and Rocha [4] developed a theory of fractional isomorphism for graphons. In
particular, they showed that all the above characterizations of fractional graph isomor-
phism have graphon counterparts and are indeed equivalent. To formulate some of these
counterparts, one needs to develop nontrivial analytic machinery. Here, we do that only
for (FGI-2) and (FGI-3), which we require.
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Figure 1: Graphons U and W from (FGI’-3).

(FGI’-2) Two graphons U and W are fractionally isomorphic if and only if t(T, U) = t(T,W )
for every tree T . Here, t(·, ·) is the usual homomorphism density function.

(FGI’-3) A naive counterpart to (FGI-3) would involve partitions Ω = Y1t . . .tY` into sets of
positive measure. This approach, however, does not work. Consider Ω = [0, 1) with
the Lebesgue measure π and two graphons U and W defined by U(x, y) = (x+ y)/2
and W (x, y) = 2((x + y) mod 0.5); see Figure 1. It is easy to check that U and W
are fractionally isomorphic in the sense of (FGI’-2). (As a matter of fact, U and W
satisfy an even stronger condition called weak isomorphism.) But the requirement
from (FGI-3) that all the vertices within one cell have the same degree dictates that
the minimum (and only) equitable partition for U be {x}x∈[0,1) with uncountably
many singleton cells. InW , we can pair up x and x+ 1

2
to get the minimum equitable

partition
{
x, x+ 1

2

}
x∈[0, 1

2
)
. This shows that one has to work with sigma-algebras

instead of finite partitions into sets of positive measure. Here, we briefly recall the
construction, referring to [3, 4] for details. We say that a sigma-algebra[∗] C ⊂ B
is U-invariant if for every f ∈ L2(Ω, C) and for the function TUf defined by the
kernel operator TU as (TUf)(x) =

∫
y
U(x, y)f(y) we have TUf ∈ L2(Ω, C). With

this definition it can be shown that there is a unique minimum U -invariant sigma-
algebra, denoted by C(U). Let us then consider the quotient space Ω/C(U), the
Borel probability measure π/C(U) on Ω/C(U) and a measurable surjection qU : Ω→
Ω/C(U) such that π/C(U) is the pushforward of π via qU . With these notions, we
can naturally transfer the conditional expectation E (U | C(U)× C(U)) to the domain
(Ω/C(U))2 by requiring that for the resulting graphon U/C : (Ω/C(U))2 → [0, 1] we
have E (U | C(U)× C(U)) (x, y) = U/C(qU(x), qU(y)) for all x, y ∈ Ω. We can repeat
the same construction for another graphon W . The graphons U and W are then
fractionally isomorphic if there is a measure preserving bijection b : Ω/C(U) →
Ω/C(W ) so that U/C(U)(x, y) = (W/C(W ))(b(x), b(y)) for every x, y ∈ Ω/C(U).
To summarize in nontechnical terms, the initial naive approach where the notion of
grouping comes from a partition Ω = Y1 t . . . t Y` has to be replaced by “grouping”
according to sigma-algebra C(U) and conditional expectation E (U | C(U)× C(U))
serves as the refined version of the numbers di,j from (FGI-3).

[∗]an additional technical condition is needed in the actual definition
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We can start connecting the notions of fractional isomorphism for graphs and for
graphons. The direction “finite graphs⇒graphons” was already observed in [4].

Proposition 1. Suppose that G1, G2, . . . and H1, H2, . . . are sequences of graphs which
converge in cut distance to graphons U and W respectively and for which Gi and Hi are
fractionally isomorphic for each i ∈ N. Then U and W are fractionally isomorphic.

Since the proof in [4] is not very explicit (‘follows from the fact that fractional isomor-
phism of graphons is an equivalence relation closed in the cut distance’), we give further
details here.

Proof. Let T be an arbitrary tree on, say, k vertices. By (FGI-2) we have hom(T,Gi) =
hom(T,Hi) for each i ∈ N. Since Gi and Hi are of the same order, we have equality of
homomorphism densities, that is, hom(T,Gi)

v(Gi)k
= hom(T,Hi)

v(Hi)k
. Convergence in the cut distance

implies convergence of all homomorphism densities, so in particular we have

t(T, U) = lim
i→∞

hom(T,Gi)

v(Gi)k
= lim

i→∞

hom(T,Hi)

v(Hi)k
= t(T,W ) .

The fact that U and W are fractionally isomorphic now follows from (FGI’-2).

Let us look at the reverse direction “graphons⇒finite graphs”. It is not true in general
that if U and W are fractionally isomorphic graphons and G1, G2, . . . and H1, H2, . . . are
sequences of graphs converging in cut distance to U and W respectively, then Gi and Hi

are fractionally isomorphic for each i ∈ N. Indeed, Gi and Hi might have different orders,
which would automatically make them not fractionally isomorphic. Even if Gi and Hi had
the same order, a single-edge edit of one of them would preserve convergence in cut distance
but make them not fractionally isomorphic. Hence, a sensible question in this direction
needs to have an existential quantification for the sequences instead of a universal one.
Indeed, this was the main open question of [4].

Question 2 (Question 3.2 in [4]). Suppose that U and W are fractionally isomorphic
graphons. Do there exist sequences {Gi}i∈N and {Hi}n∈N of graphs which converge in cut
distance to U and W respectively and for which Gi and Hi are fractionally isomorphic for
each i ∈ N?

The main result of our work is a positive answer to Question 2. In fact, we prove a
slightly stronger statement in which we simultaneously approximate an arbitrary (even
infinite) family of mutually fractionally isomorphic graphons.

Theorem 3. Suppose that U is a family of mutually fractionally isomorphic graphons.
Then for each ε > 0 there exists n0 ∈ N such that for each n ≥ n0 there exists a family
{HU}U∈U of mutually fractionally isomorphic graphs on vertex set [n] with the property
that for each U ∈ U the cut distance between U and HU is at most ε.
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It is easy to check that for each d ∈ [0, 1] the family Ud of all d-regular graphons[†] is
a family of mutually fractionally isomorphic graphons. Our proof of Theorem 3 gives the
following corollary for d-regular graphons.

Theorem 4. Suppose that d ∈ [0, 1] and Ud is the family of all d-regular graphons. Then
for every ε > 0 there exists n0 ∈ N such that for each n ≥ n0 there exists D ∈ N and a
family {HU}U∈Ud of D-regular graphs on vertex set [n] such that for each U ∈ Ud the cut
distance between U and HU is at most ε.

2 Sketch of proof of Theorem 3
While we explained in (FGI’-3) that an infinitesimal approach using sigma-algebras is
needed, we begin the following proof overview under the assumption that for a graphon
U ∈ U the sigma-algebra C(U) is generated by a finite partition Q = {Qi}i∈[M ] of Ω sets
of positive measure; we shall return to the general case at the end of this exposition.

2.1 Desired graph profile from the graphon profile

The U -invariance of C(U) implies that for all i, j ∈ [M ] and x ∈ Qi we have a counterpart
to (1), namely ∫

z∈Qj

U(x, z) = di,jπ(Qj) (2)

where di,j := 1
π(Qi)π(Qj)

·
∫
y∈Qi

∫
z∈Qj

U(z, y). The fact that each graphon U ′ ∈ U is frac-
tionally isomorphic to U then means that there is a partition Q′ = {Q′i}i∈[M ] of Ω with
π(Q′i) = π(Qi) such that quantities d′i,j defined in analogy with di,j satisfy d′i,j = di,j.
So, to prove the theorem in this simplified setting, it is enough to approximate (for a
given ε > 0 and sufficiently large n) U in cut distance by an n-vertex graph HU with an
equitable partition (in the sense of (FGI-3)) whose parameters depend solely on the vec-
tor r = (π(Qi))i∈[M ] and the matrix D = (di,j)i,j∈[M ]. Indeed, repeating the construction
detailed below for any other U ′ ∈ U yields a graph HU ′ that has an equitable partition
with the same parameters. Hence, it follows by (FGI-3) that HU ′ and HU are fractionally
isomorphic.

Our construction of HU has two main steps, as detailed in the following two subsections.

2.2 Approximating by G(n, U)

First, we use the inhomogeneous random graph model G(n, U) (see [5, Section 10.1])
to generate H∗U . Let the points x1, . . . , xn ∈ Ω sampled in the procedure represent the
respective vertices 1, . . . , n of V (H∗U). For i ∈ [M ] define X∗i := {` ∈ V (H∗U) : x` ∈ Qi}.
By the ‘Second sampling lemma’ (see [5, Lemma 10.15]) H∗U is close to U in cut distance

[†]A graphon W is d-regular, if for each x ∈ Ω we have
∫
y
W (x, y) = d.
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Figure 2: An example of the fine-tuning of the degree sequence. The figure focuses on the
degrees within X2 and from X1 to X2. The original graph H∗U is shown in black. The parts
added on the way to constructing HU are shown in red. Theorems of Erdős–Gallai and of
Gale–Ryser are used for the red parts.

with high probability. Further, basic concentration results tell us that with high probability,
for each i, j ∈ [M ] and each ` ∈ X∗i we have

|X∗i | ≈ rin and (3)
degH∗U (`,X∗j ) ≈ di,jrjn. (4)

2.3 Fine-tuning the degree sequence

We shall modify H∗U in several steps by adding o(n) vertices to each set Xi and o(n2) edges
inside each set Xi and inside each bipartite pair (Xi, Xj), with the aim to achieve after
these modifications that

|Xi| = Ni ≈ rin and (5)
degHU

(`,Xj) = Di,j ≈ di,jrjn (6)

for some numbers (Ni)i∈[M ] and (Di,j)i,j∈[M ] which depend only on r, D and n. Hence,
we fulfil the task described in Section 2.1. We apply the classical theorem of Erdős and
Gallai on graphic sequences and its bipartite counterpart due to Gale and Ryser. These
theorems allow us to construct graphs within the sets Xi\X∗i and in the pairs (Xi\X∗i , Xj)
(including the case i = j) with precisely controlled degree sequences to achieve a state in
which each graph HU [Xi] is regular and each graph HU [Xi, Xj] is biregular as required
by (6). An illustration is given in Figure 2.

2.4 From finite partitions to sigma-algebras

As explained in (FGI’-3), U/C(U) is defined in terms of a suitable sigma-algebra and does
not usually correspond to a finite partition. Here, Szemerédi’s regularity lemma comes to



Fractionally isomorphic graphs and graphons 585

the rescue. Indeed, it is well-known that if {Q̃i}i∈[M ] is a δ-regular Szemerédi partition for
a graphon Γ, then in particular we have an approximate version of (2) for most vertices
x ∈ Q̃i.[‡] We shall take δ � ε.

So, given a graphon U , generate H∗U ∼ G(n, U) as in Section 2.2. Since we apply
Szemerédi’s regularity lemma merely to handle degrees, and since we want its application
to work in the same way for all graphons in the class U , we shall apply it to the graphon
Γ := U/C(U). Let Ω/C(U) = Q̃1 t . . . t Q̃M be a δ-regular Szemerédi partition for Γ.
Define Q1, . . . , QM by Qi := q−1U (Q̃i). Now, Ω = Q1 t . . . tQM is in general not a regular
Szemerédi partition.[§] However, it can still be proved that an approximate version of (2)
holds for most vertices x ∈ Qi with respect to the graphon U . This allows us to define
again X∗i := {` ∈ V (H∗U) : x` ∈ Qi} and then fine-tune the sequence in a spirit similar to
that described in Section 2.3.

2.5 Proving Theorem 4

If U is d-regular then Ω/C(U) = {a} consists of a single atom and U/C(U)(a, a) = d. So,
M = 1 and Q1 = Ω. In particular, the construction above guarantees that the graph
HU = HU [X1] is regular, as needed.

[‡]In this overview, we neglect the issue that a Szemerédi partition may involve some irregular pairs.
Also, we neglect that the usual regularity lemma does not control behaviour inside clusters whereas we
shall need a counterpart to (2) even for i = j.

[§]This is perhaps best illustrated with an example. Let Ω = A1 t A2, α1, α2 be two distinct numbers
and U be such that for i = 1, 2 and for every x ∈ Ai we have∫

y∈Ai

U(x, y) = αi and
∫
y∈A3−i

U(x, y) = 0 . (7)

Indeed, in this example Ω/C(U) = {a1, a2} consists of two atoms and we have U/C(U)(ai, ai) = αi

and U/C(U)(ai, a3−i) = 0. Obviously, the only possible Szemerédi regularization for U/C(U) has M = 2,
Q̃1 = {a1} and Q̃2 = {a2}. But the pullbacks {Qi := q−1U (Q̃i) = Ai}i∈[2] clearly need not form a Szemerédi
regularization for U , since the restriction (7) leaves a lot of space for wildly structured graphons.
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