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Abstract

The fascinating question of the maximum value of twin-width on planar graphs
is nowadays not far from a final resolution; there is a lower bound of 7 coming from
a construction by Král’ and Lamaison [arXiv, September 2022], and an upper bound
of 8 by Hliněný and Jedelský [arXiv, October 2022]. The upper bound (currently
best) of 8, however, is rather complicated and involved. We give a short and simple
self-contained proof that the twin-width of planar graphs is at most 11.
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1 Introduction
The structural parameter twin-width was introduced in 2020 by Bonnet, Kim, Thomassé
and Watrigant [2]. We consider it only for simple graphs (instead of general binary rela-
tional structures).

A trigraph is a simple graph G in which some edges are marked as red, and with
respect to the red edges only, we naturally speak about red neighbours and red degree
in G. However, when speaking about edges, neighbours and/or subgraphs without further
specification, we count both ordinary and red edges together as one edge set. The edges
of G which are not red are sometimes called (and depicted) black for distinction. For a
pair of (possibly not adjacent) vertices x1, x2 ∈ V (G), we define a contraction of the pair
x1, x2 as the operation creating a trigraph G′ which is the same as G except that x1, x2 are
replaced with a new vertex x0 (said to stem from x1, x2) such that:
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• the (full) neighbourhood of x0 in G′ (i.e., including the red neighbours), denoted by
NG′(x0), equals the union of the neighbourhoods NG(x1) of x1 and NG(x2) of x2 in
G except x1, x2 themselves, that is, NG′(x0) = (NG(x1) ∪NG(x2)) \ {x1, x2}, and
• the red neighbours of x0, denoted here by N r

G′(x0), inherit all red neighbours of x1
and of x2 and add those in NG(x1)∆NG(x2), that is, N r

G′(x0) =
(
N r
G(x1) ∪N r

G(x2) ∪
(NG(x1)∆NG(x2))

)
\ {x1, x2}, where ∆ denotes the symmetric set difference.

A contraction sequence of a trigraph G is a sequence of successive contractions turning G
into a single vertex, and its width d is the maximum red degree of any vertex in any trigraph
of the sequence. We also then say that it is a d-contraction sequence of G. The twin-width
of a trigraph G is the minimum width over all possible contraction sequences of G. In
other words, a graph has twin-width at most d, iff it admits a d-contraction sequence.

After the first implicit (and astronomical) upper bounds on the twin-width of planar
graphs, e.g. [2], we have seen a stream of improving explicit bounds [1,3,4,6], culminating
with the current best upper bound of 8 by Hliněný and Jedelský [5]. This is complemented
with a nearly matching lower bound of 7 by Král’ and Lamaison [7], but the right maximum
value (7 or 8?) is still an open question.

It comes without surprise that the gradually improving upper bounds have required
stronger and more involved arguments, and the best ones are not easy to read for non-
experts. In this paper, we take the opposite route; we give a slightly worse bound with a
self-contained proof which is as short and simple as possible with the current knowledge:

Theorem 1. The twin-width of any simple planar graph is at most 11.

Due to page limits, some full proofs are left for the preprint version arXiv:2302.08938.

2 Layered Skeletal Trigraphs
We start with the key concept of our proof – of a “splendid layered skeletal trigraph”.

We use standard terminology of graph theory, and assume every graph to be simple
(without loops and multiple edges). A BFS tree of a graph G is a spanning tree defined
by a run of the breadth-first-search algorithm on G.

For a (tri)graph G, an ordered partition L = (L0, L1, . . .) of V (G) is called a layering
of G if, for every edge {v, w} of G with v ∈ Li and w ∈ Lj, we have |i − j| ≤ 1. For
example, every BFS tree T ⊆ G with the root r naturally defines a layering; L0 = {r},
and Li for i > 0 consisting of all vertices of G at graph distance i from r.

If T ⊆ G is a rooted tree (e.g., a BFS tree), a path P ⊆ G is called T -vertical if P ⊆ T
is a subpath of some leaf-to-root path of T .

Definition 2 (Skeletal trigraph). Let H be a trigraph and S ⊆ H a 2-connected planar
subgraph such that all edges of H induced by V (S) are black (note; including the edges
not in E(S)). Fix a plane embedding of S, and call S a plane skeleton of H. Further,
consider a face assignment of H in S in which every connected component H0 of H−V (S)
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is assigned to some face φ of S, such that all neighbours of H0 in V (S) belong to φ. Denote
by Uφ the union of the vertex sets of all components assigned to φ in this assignment.

If H and S satisfy the previous conditions for some face assignment, we call (H,S) a
skeletal trigraph, and if L is a layering of H, then (H,S,L) is a layered skeletal trigraph.

Definition 3 (Splendid layered skeletal trigraph). Consider a layered skeletal trigraph
(H,S,L) as in Definition 2, and a face φ of S. We say that φ is empty if Uφ = ∅ (i.e., if
no connected component of H − V (S) is assigned to φ), that φ is reduced if |Uφ ∩ Li| ≤ 1
holds for every layer Li ∈ L, and that φ is rich if |Uφ ∩ Li| ≤ 3 holds for every Li ∈ L.

A layered skeletal trigraph (H,S,L) is splendid if either S = ∅ and |V (H) ∩ Li| ≤ 4
holds for all Li ∈ L, or S 6= ∅ and the following conditions are satisfied:

a) At most one face of the plane skeleton S is rich, and all other faces of S are empty or
reduced. Every empty face of S is a triangle.

b) There exists a BFS tree T ⊆ S of the skeleton S such that:
• The layering defined by T in S is equal to the restriction of L to V (S).

• For every non-empty face φ of S, bounded by a cycle C ⊆ S, there exists an edge
e ∈ E(C) such that C − e is the union of two T -vertical paths intersecting in one
vertex u ∈ V (C). Note that such u must be unique, and we call u the sink of φ.

c) For every non-empty face φ of S, and u the sink of φ; if u ∈ Li ∈ L, then all vertices of
Uφ ∪ V (C − u) belong to Li+1 ∪ Li+2 ∪ . . ., and there is a black edge in H (but no red
edge) from u to each vertex of Uφ ∩ Li+1.

d) Assume φ is a rich face of S bounded by C. For every i such that Li ∈ L, every vertex
v in X := (Uφ ∪ V (C)) ∩ Li has in H at most 3 red edges into other vertices of X and
at most 4 red edges into Uφ ∩ (Li−1 ∪ Li+1) (note; no V (C) in the latter expression).
Moreover, if |Uφ ∩ Li+1| > 1, then v ∈ X has at most 2 red edges into Uφ ∩ Li−1.

Definition 3 is illustrated, with comments, in Figure 1.
The core of the paper is in the following two claims which follow directly from Defini-

tion 3. While the first one is easy and its proof is skipped here, a proof of the second one
is sketched in the next section.

Lemma 4.* Every splendid layered skeletal trigraph has maximum red degree at most 11.

Lemma 5. Every splendid layered skeletal trigraph admits an 11-contraction sequence.

We now show how the claim implies our main result.

Proof of Theorem 1. Given a planar graph G, we fix any plane embedding of G. We
construct a plane triangulation G+ from G by adding new vertices to every face of G and
connecting them to vertices of this face. Then G+ is 2-connected. Choosing an arbitrary
BFS tree of G+, we take the layering L = (L0, L1, . . .) of G+ naturally defined by T . Then,
trivially, (G+, G+,L) is a splendid layered skeletal trigraph, and hence G+ admits an 11-
contraction sequence by Lemma 5. Restricting this sequence only to the contractions of
pairs from V (G) we, again trivially, obtain an 11-contraction sequence of G.
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Figure 1: A picture of a splendid layered skeletal trigraph (H,S,L), in which the skeleton
S is depicted with black vertices and thick black edges such that the associated BFS tree
T ⊆ S is drawn with thick solid edges and the edges of E(S)\E(T ) are thick dashed. T has
its root at the top and its (ten) BFS layers are organized horizontally in the picture. There
are four bounded non-empty faces in S, denoted by φ1, φ2, φ3, φ4 (with corresponding sinks
u1, u2, u3, u4), and emphasized with gray shade. The unbounded face of S is also non-
empty, but it is only sketched in the picture. There is one rich face in (H,S), namely
φ3, and it contains a red vertex r (emphasized with a circle around) that achieves the
maximum red degree 11 allowed by Definition 3.

3 Proof of Lemma 5, a Sketch
Our proof starts with an auxiliary claim whose straightforward proof is skipped here.

Lemma 6.* Let G be a 2-connected plane graph, and T ⊆ G a BFS tree of G. Assume T
that has at least 3 leaves, and that for every facial cycle C of G, we have |E(C)\E(T )| = 1
or C is a triangle. Then there exists an edge e ∈ E(G) \ E(T ) such that, for the unique
cycle De ⊆ T + e, one of the two faces of De contains (in its strict interior) precisely one
leaf of T and not the root of T .

For a proof of Lemma 5, consider a splendid layered skeletal trigraph (H,S,L). For
start, the maximum red degree of H is at most 11 by Lemma 4. For the rest of a sought
11-contraction sequence of H, we proceed by induction on |V (H)|+ |V (S)|.
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If the skeleton is empty S = ∅, then we pick the highest index i such that V (H)∩Li 6= ∅
and straightforwardly contract from layer i down by induction. If S 6= ∅, all faces of S are
reduced (or empty), and the BFS tree T ⊆ S from Definition 3.b has at most 2 leaves, we
get that T consists of at most two T -vertical paths, and that S has at most two non-empty
faces by Definition 3. b. Since the two faces are reduced, every layer of L contains at most
2 + 2 = 4 vertices. So, (H,S ′ = ∅,L) is also a splendid layered skeletal trigraph (note; no
contraction happend) and we continue as before again by induction.

For all other cases, with a nonempty skeleton S 6= ∅, we branch as follows.

Case 1. The skeleton S has all faces empty. Then S = H since S is a plane triangulation
by Definition 3.a. Considering the BFS tree T ⊆ S from Definition 3.b, we apply
Lemma 6 and get e and cycle De ⊆ T + e ⊆ H. Let Q be the maximal T -vertical
path starting in x and not hitting De. We set S ′ := S−V (Q), using that the layered
skeletal trigraph (H,S ′,L) is splendid again, and we finish by induction.

Case 2. The skeleton S has a face φ which is neither empty nor reduced. Then φ is a rich
face, and let j be the largest index such that |Uφ ∩ Lj| > 1 for Lj ∈ L. We contract
any two vertices of Uφ ∩Lj in H, creating a layered skeletal trigraph (H ′, S,L′). For
an illustration, see the face φ = φ3 in Figure 1 in which the trigraph resulted by a
contraction of two vertices from Uφ3 ∩ L6 into the emphasized vertex r. We show
that (H ′, S,L′) conforms to Definition 3, and then apply induction.

Case 3. The skeleton S has all faces reduced (and some non-empty). As in Case 1, we
apply Lemma 6 and get e and cycle De ⊆ T + e ⊆ S, and the path Q ⊆ S in the
interior of De. The interior of De contains at most two non-empty faces φ1 and φ2

of S. The considered case can be illustrated in Figure 1 (ignoring for now that the
face φ3 is not reduced) with the edge e = e0. In general, there can be more than
one empty faces of the skeleton S enclosed by De0 . We again set S ′ := S − V (Q)
and consider the layered skeletal trigraph (H,S ′,L) with the (new) non-empty face
φ bounded by De, which can be shown rich. Consequently, (H,S ′,L) conforms to
Definition 3, and we again finish by induction with it.

The whole proof, modulo straightforwad details regarding Definition 3, is now done.

4 Conclusion
We have provided a short self-contained proof of Theorem 1. While the proved bound is
not the best currently possible, the proof given here is way simpler than those in [4, 5].
While sacrificing a bit of simplicity of the given proof, we can also give a better upper
bound of 9 (thus matching [4]), but we are so far not sure whether a similarly simplified
proof can be given for the upper bound of 8 as in [5].
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