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Crux, space constraints and subdivisions
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Abstract
The existence of H-subdivisions within a graph G has deep connections with

topological, structural and extremal properties of G. One prominent example of
such a connection, due to Bollobás and Thomason and independently Komlós and
Szemerédi, asserts that the average degree of G being d ensures a KΩ(

√
d)-subdivision

in G. Although this square-root bound is the best possible, various results showed
that much larger clique subdivisions can be found in a graph for many natural classes.
We investigate the connection between crux, a notion capturing the essential order of
a graph, and the existence of large clique subdivisions.

Our main result gives an asymptotically optimal bound on the size of a largest
clique subdivision in a generic graph G, which is determined by both its average
degree and its crux size. As corollaries, we obtain

• a characterisation of extremal graphs for which the square-root bound above is
tight: they are essentially a disjoint union of graphs each of which has the crux
size linear in d;

• a unifying approach to find a clique subdivision of almost optimal size in graphs
which do not contain a fixed bipartite graph as a subgraph;
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• and that the clique subdivision size in random graphs G(n, p) witnesses a dicho-
tomy: when p = ω(n−1/2), the barrier is the space, while when p = o(n−1/2),
the bottleneck is the density.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-084

1 Introduction
For a graph H, a subdivision of H (or an H-subdivision) is a graph obtained by replacing
each edge of H by internally vertex-disjoint paths. Studies on the existence of certain
subdivisions in a given graph G provide deep understandings on various aspects of G.
For example, the cornerstone theorem of Kuratowski [12] in 1930 completely characterises
planar graphs by proving that graphs are planar if and only if they do not contain a
subdivision of eitherK5, the complete graph on five vertices, orK3,3, the complete bipartite
graph with three vertices in each class.

What conditions on graphs G guarantee an H-subdivision in them? A fundamental
result of Mader [14] in 1967 states that a large enough average degree always provides a
desired subdivision. Namely, for every t ∈ N, there exists a smallest integer f(t) such that
every graph G with average degree at least f(t) contains a subdivision of Kt. He further
conjectured that f(t) = O(t2). This conjecture was verified in the 90s by Bollobás and
Thomason [3] and independently by Komlós and Szemerédi [10]. In fact, f(t) = Θ(t2);
the lower bound was observed by Jung [8] in 1970: consider the n-vertex graph which is
a disjoint union of n/5t2 copies of K t2

10
, t

2

10

. A clique subdivision must be embedded in a
connected graph; this example, though may have arbitrary large order n, is essentially the
same as one copy of K t2
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, which does not contain a Kt-subdivision. Indeed, at least(
t/2
2

)
many edges are subdivided in any Kt-subdivision in K t2
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, which would require
around t2/8 > t2/10 vertices on one side. In other words, apart from the obvious “degree
constraint” from the average degree, there is also some “space constraint” forbidding a
Kt-subdivision.

From the extremal example above, it is then natural to wonder ifG does not structurally
look like K t2

10
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, can we find a larger clique subdivision? Indeed, Mader [15] conjectured
that every C4-free graph with average degree d contains a subdivision of KΩ(d) and recently
it was resolved by Liu and Montgomery [13]. Furthermore, they proved that for every
t ≥ s ≥ 2, there exists a constant c = c(s, t) such that if G is Ks,t-free and has average
degree d, then G has a subdivision of a clique of order cds/2(s−1).

Note that a C4-free graph with average degree at least d must have at least Ω(d2)
vertices as the maximum number of edges of an n-vertex C4-free graph is O(n3/2), hence
providing enough space to put a KΩ(d)-subdivision with O(d2)-vertices. Similarly, the
number ds/2(s−1) also matches with the conjectured extremal number of Ks,t. Thus, all
theseH-free conditions relax the “space constraints”. Hence, this suggests that ‘the essential
order’ of the graph G, rather than structural F -freeness, is an important factor for the size
of the largest clique subdivision. Indeed, Liu and Montgomery [13] conjectured that every
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graph G with its ‘essential order’ n and average degree d contains a Kt subdivision with
t = Ω(min{d, n

logn
}).

Such a notion of ‘essential order’, called crux, was recently introduced by Haslegrave,
Hu, Kim, Liu, Luan and Wang [5]. We write d(G) for the average degree of G.

Definition 1.1 (Crux). Let α > 0 and G be a graph. A subgraph H ⊆ G is an α-crux if
d(H) ≥ α · d(G). Let cα(G) be the order of a smallest α-crux in G, that is:

cα(G) = min{n : ∃H ⊆ G s.t. |H| = n, d(H) ≥ αd(G)}.

We will write simply c(G) when α = 1/100; the choice of 1/100 here is not special and
can be replaced with any small number. Roughly speaking, the crux of a graph is large
when the edges are relatively uniformly distributed.

Our main result reads as follows. It implies in particular that the space constraints,
measured by the crux size, is a deciding factor for the size of largest clique subdivision in
a graph.

Theorem 1.2. There exists an absolute constant β > 0 such that the following is true.
Let G be a graph with d(G) = d. Then G contains a Kβt/(log log t)6-subdivision where

t = min
{
d,

√
c(G)

log c(G)

}
.

Theorem 1.2 asymptotically confirms a conjecture of Liu and Montgomery [13]. The
bound above is optimal up to the multiplicative (log log t)6 factor: the d-blowup of a d-
vertex O(1)-regular expander satisfies c(G) = Θ(d2) and the largest clique subdivision has
order d/

√
log d (see [13] for more details).

2 Applications

2.1 Characterisation of extremal graphs

The first consequence of our main result is a structural characterisation of extremal graphs
G having the smallest possible clique subdivision size Θ(

√
d(G)), showing that the only

obstruction to get a larger than usual clique subdivision is a small crux. In other words,
if c(G) = ω(d), then one can embed a Kt-subdivision with t = ω(

√
d). Theorem 1.2 does

not imply this result but along the way of proving it, we obtain this.

Theorem 2.1. Given a graph G with average degree d, if the largest clique subdivision has
order Θ(

√
d), then its crux size is linear in d, i.e. c(G) = O(d).

Theorem 2.1 implies that the extremal graphs are essentially disjoint union of dense
small graphs whose crux size is linear in their average degrees. This can be viewed as
an analogous result of Myers [16] who studied the extremal graphs for embedding clique
minors.
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2.2 Graphs without a fixed bipartite graph

The next application provides a lowerbound on the largest clique subdivision size, which
is optimal up to a polylog-factor, in a graph without a fixed copy of bipartite graph H.
This generalises the result of Liu and Montgomery [13] on Ks,t-free graphs. We would
like to remark that the proof of Liu and Montgomery makes heavy use of the structure of
the forbidden graph Ks,t, hence their argument does not extend to general H-free graphs.
Below, we write x = Ω̃(y) if there exists positive constants a, b such that x ≥ ay log−b y.

Corollary 2.2. Let H be a bipartite graph with extremal number ex(n,H) = O(n1+τ ) for
some 0 < τ < 1 and let G be an H-free graph with average degree d. Then G contains a
Kt-subdivision where

t =

{
Ω̃(d

1
2τ ) if τ > 1/2

Ω̃(d) if τ ≤ 1/2.

Proof. Let α = 1/100, and F be a smallest α-crux of G of order c(G). As F is H-free,
e(F ) ≤ O(|F |1+τ ), hence

c(G) = |F | = Ω(d(F )1/τ ) = Ω(d(G)1/τ ).

Therefore, Theorem 1.2 implies that G has a clique subdivision of size Ω̃(min{d, c(G)
1
2}) =

Ω̃(min{d, d 1
2τ }).

The bound above is best possible up to the polylogarithmic factor if ex(n,H) =
Θ(n1+τ ). To see this, let G be an n-vertex bipartite H-free graph G with Θ(n1+τ ) edges. If
G has a Kt-subdivision, then at least t/2 core vertices are in the same part of a bipartition
of G. For any two of them, a path connecting them uses at least one vertex of the other
part of G so

(
t/2
2

)
≤ n and therefore t = O(

√
n) = O(d1/2τ ).

2.3 Dichotomy on Erdős-Rényi random graphs

The last application delas with the subdivisions in Erdős-Rényi random graphs. While the
size of the largest Kt-minor in a random graph is widely studied (for example [2, 11, 4]),
the only known results for clique subdivision is when p is a constant. More precisely, when
p ∈ (0, 1) is a constant, Bollobás and Catlin [1] proved in 1981 that the largest clique
subdivision of G(n, p) is (

√
2/(1− p) + o(1))

√
n with high probability (w.h.p.).

We determine the size of the largest clique subdivision upto polylog-factor when p =
ω( logn

n
). We remark that when p = o( logn

n
), the clique subdivision is typically extremely

small in G(n, p): only logarithmic in n.

Corollary 2.3. Suppose p = ω( logn
n

) and p = 1 − Ω(1). Then w.h.p., the largest t that
G = G(n, p) has a Kt-subdivision is given by

t = Θ̃(min{np,
√
n}).
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The proof is obtained by showing c(G) = Ω(n) for a binomial ramdom graph using
the standard concentration inequalities. Corollary 2.3 implies an interesting dichotomy on
clique subdivision size in G(n, p) above and below the density 1/

√
n: when p = ω(n−1/2),

then it is limited solely by the space constraints, while when p = o(n−1/2), the degree
constraint is the bottleneck.

3 Outline of the proof
In this section, we sketch the proof of our main theorem. For the detail version of the
proof, see the online vertsion of our preprint [7].

3.1 Sublinear expander

A main tool we use in this paper is the sublinear expander notion introduced by Komlós
and Szemerédi [9, 10]. Let N i

G(X) be the set of vertices which is distance exactly i from
X. In particular, N0

G(X) = X. We write NG(X) to denote N1
G(X) and we write Bi

G(X) =⋃
j≤iN

i
G(X). For given ε, k, we define ρ(x) = ρ(x, ε, k) as

ρ(x) =

{
0 if x < k

5
ε

log2(15x/k)
if x ≥ k

5

Note that ρ(x) is a decreasing function and xρ(x) is a increasing function for x ≥ k
2
. Komlós

and Szemerédi introduced the notion of (ε, k)-expander, which is a graph in which every
set of appropriate size has not too small external neighbourhood. Haslegrave, Kim and Liu
[6] slightly generalised this notion to a robust version. Roughly speaking, a graph G is a
robust-expander if every set of appropriate size has not too small external neighbourhood
even after deleting a small number of vertices and edges. For an edge set F ⊆ E(G), we
write G \ F to denote the graph with the vertex set V (G) and the edge set E(G) \ F .

Definition 3.1 ([6]). For ε > 0, k > 0, a graph G is (ε, k)-robust-expander if for every
subset X ⊆ V (G) of size k

2
≤ |X| ≤ |V (G)|

2
and an edge set F ⊆ E(G) with |F | ≤

d(G)ρ(|X|)|X|, we have |NG−F (X)| ≥ ρ(|X|)|X|.

This notion of sublinear expander is very useful in the following three aspects.

• Every graph contains a robust-expander subgraph with almost the same average
degree.

• This provides a short connection between any two large sets while avoiding a relatively
small set of vertices and edges.

• No metter which small set of vertices we delete, the remaining graph still has large
average degree.

These three aspects are captured in the following three results.
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Theorem 3.2. [6, 9, 10] If ε > 0 is sufficiently small (independent from k) so that∫∞
1
ρ(x, ε, k)/xdx < 1

8
, then every graph G contains an (ε, k)-robust-expander H with

d(H) ≥ d(G)/2 and δ(H) ≥ d(H)/2 as a subgraph.

Lemma 3.3. [6, 10] Let G be an n-vertex (ε, k)-robust-expander. Then for any two vertex
sets X1, X2 of size at least x ≥ k

2
, and a vertex set W of size at most xρ(x)

4
, there exists a

path between X1 and X2 in G−W of length at most 2
ε

log3(15n
k

).

Lemma 3.4. Suppose 0 < 1
n
� ε < 1 and k < n

10
. Let G be an n-vertex (ε, k)-robust-

expander. Then for every W ⊆ V (G) with |W | ≤ 1
20
ρ(n, ε, k) · n, we have d(G −W ) ≥

1
20
ρ(n, ε, k) · d(G).

3.2 Outlines of the main steps

Assume that G and t are as in Theorem 1.2 and let s = βt/(log log t)6 for some small
enough constant β > 0. Using Lemma 3.2, we can assume that our graph is an expander
with an appropriate choice of ε and k. Our proof bacisally use the structures introduced
in [13]. We find Ω(s) rooted trees with many branches and leaves (called units and webs)
and build short vertex-disjoint paths between them to form a desired clique subdivision.
On the other hand, directly mimicking such an argument does not provide a subdivision
of the desired size. We need to find a clique subdivision of the size which almost matches
the smaller bounds of the degree constraint d and the space constraint

√
c(G)/ log c(G).

If the bound from the degree constraint is stronger (i.e., d is smaller than
√
c(G)/ log c(G)),

the main goal is to collect many vertices of degree at least t. If the bound from the space
constraint is stronger (i.e.,

√
n/ log n is much smaller than d), the main difficulty is to find

short paths connecting the vertices. As we want to build Ω(s2) vertex disjoint paths in G
to form a Ks-subdivision, we need to be able to find Ω(s2) paths of average length at most
O(n/s2) = log n(log log n)O(1). However, Lemma 3.3 only guarantees a much longer path of
length O(log3(n/k)). To obtain paths of desired length, we may take k to be n/(log n)O(1),
but such a choice of k does not allow us to obtain expansions of small sets, introducing
another difficulty. Another issue from this approach is that we don’t have any controls on
the order of (ε, k)-expander we take. The order of such an expander puts additional space
constraints for finding a desired subdivision as well as affect the length of paths we obtain
from Lemma 3.3.

To overcome the above difficulties, we consider several cases and use (ε, k)-expander in
each case with different choices of k. Let d = d(G). By iteratively applying Theorem 3.2,
we obtain the following graphs

G ⊇ G1 ⊇ G2 ⊇ H

where G1 is an (ε, εd)-expander, G2 is an (ε, d2)-expander, and H is an (ε, c(G)/100)-
expander such that each graph has minimum degree at least d/16. Let n1 = |G1|, n2 = |G2|,
and nH = |H|. We now consider the following four cases depending on the values of t, n1, n2,
and nH .
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Case 1: d ≤ exp(log1/6 n1) :d ≤ exp(log1/6 n1) :d ≤ exp(log1/6 n1) : In this case, we can adapt a theorem in [13] to obtain a
desired KΩ(d)-subdivision.
Case 2: t ≤ min{

√
n1

(logn1)O(1) ,
d

(log d)O(1)} :t ≤ min{
√
n1

(logn1)O(1) ,
d

(log d)O(1)} :t ≤ min{
√
n1

(logn1)O(1) ,
d

(log d)O(1)} : In this case, as t is quite smaller than both d

and
√
n1/ log n1, the degree constraint and the space constraint within G1 are not strong

obstacles to obtain a desired KΩ(t)-subdivision. Hence, by utilizing the properties of the
expanders, we can construct many units and webs and connect them with short paths to
obtain a desired KΩ(t)-subdivision.
Case 3: d ≤

√
n2

(logn2)O(1) :d ≤
√
n2

(logn2)O(1) :d ≤
√
n2

(logn2)O(1) : In this case, the space constraint within G2 is much weaker than
the degree constraint, so our main concern is to collect Ω(t) vertices of degree at least
d(log n2)O(1). Although Lemma 3.4 provides a set of large degree vertices, it only gives
vertices of degree d/(log n2)O(1), which is smaller than what we need. Considering two
cases where the edge distribution of G2 is close to uniform and skewed, a careful analysis
provides a desired set of vertices of large degree in both cases.
Case 4: The remaining cases: In the remaining case, we will find a desired Ks-
subdivision in H. Note that as we are not in case 1–3, we obtain the ineqaulity

nH
(log c(G))O(1)

≤ c(G) ≤ nH .

As H is (ε, c(G)/100)-expander, this ensures that ρ(x, ε, c(G)/100) = (log log c(G))O(1)

for every c(G) ≤ x ≤ nH . With this extra assumption on our hand, Lemma 3.4 now
provides a set of Ω(t/(log log t)O(1)) vertices of degree Ω(t/(log log t)O(1)), which matches
the bound from the degree constraint. Moreover, Lemma 3.3 also yields a path of length
(log log c(G))O(1) between two large sets of size at least c(G)/100. Note that the definition
of crux ensures some expansion of all vertex set smaller than c(G)/100. By utilizing
this, we can show that the O(log c(G))-th ball BO(log c(G))

H (v) of a well-chosen vertex v has
size at least c(G)/100. This together with Lemma 3.3 provides a desired path of length
(log log c(G))O(1) between two balls BO(log c(G))

H (v) and BO(log c(G))
H (u) of well-chosen vertices

u and v. Combining these ideas with further technical analysis, we obtain the desired
Ks-subdivison. We omit further details.
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