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Abstract

An r-uniform hypergraph H is semi-algebraic of complexity t = (d,D,m) if the
vertices of H correspond to points in Rd, and the edges of H are determined by
the sign-pattern of m degree-D polynomials. Semi-algebraic hypergraphs of bounded
complexity provide a general framework for studying geometrically defined hyper-
graphs.

The much-studied semi-algebraic Ramsey number Rt
r(s, n) denotes the smallest N

such that every r-uniform semi-algebraic hypergraph of complexity t on N vertices
contains either a clique of size s, or an independent set of size n. Conlon, Fox, Pach,
Sudakov and Suk proved that Rt

r(n, n) < twr−1(n
O(1)), where twk(x) is a tower of 2’s

of height k with an x on the top. This bound is also the best possible if min{d,D,m}
is sufficiently large with respect to r. They conjectured that in the asymmetric case,
we have Rt

3(s, n) < nO(1) for fixed s. We refute this conjecture by showing that
Rt

3(4, n) > n(logn)1/3−o(1) for some complexity t.
In addition, motivated by the results of Bukh-Matoušek and Basit-Chernikov-

Starchenko-Tao-Tran, we study the complexity of the Ramsey problem when the
defining polynomials are linear, that is, when D = 1. In particular, we prove that
Rd,1,m
r (n, n) ≤ 2O(n4r2m2

), while from below, we establish R1,1,1
r (n, n) ≥ 2Ω(nbr/2c−1).
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1 Introduction
Given positive integers r, s, n, the Ramsey number Rr(s, n) denotes the smallest N such
that every r-uniform hypergraph on N vertices contains either a clique of size s, or an
independent set of size n. For convenience, we write Rr(n) instead of Rr(n, n). In the
case of graphs, that is r = 2, classical results of Erdős and Szekeres [15] and Erdős [12]
tell us that R2(n) = 2Θ(n), and in case s is fixed and n is sufficiently large, we have
R2(s, n) = nΘ(s). However, in case r ≥ 3, the Ramsey numbers are less understood. Erdős
and Rado [11] and Erdős, Hajnal and Rado [14] show that

twr−1(Ω(n2)) < Rr(n) < twr(O(n)).

Also, in the asymmetric case, we have Rr(s, n) = twr−1(nΘr,s(1)) for s ≥ r + 2 [14, 18],
and R3(4, n) = 2n

Θ(1) [10]. Here, twk(x) is the tower function defined as tw1(x) := x and
twk(x) := 2twk−1(x). Hence, there is an almost exponential gap between the lower and upper
bound for Rr(n) in case r ≥ 3, and it is a major open problem to close this gap. Note that,
however, the rough order of the asymmetric Ramsey number Rr(s, n) is more understood,
at least up to the height of the required tower. See [7] for recent developments.

Yet the situation changes if we restrict our attention to hypergraphs that arise from
geometric considerations. To this end, an r-uniform hypergraphH is semi-algebraic of com-
plexity (d,D,m) if the following holds. There is an enumeration v1, . . . , vN of the vertices of
H, an assignment vi 7→ pi with pi ∈ Rd for i ∈ [N ], andm polynomials f1, . . . , fm : (Rd)r 7→
R of (total) degree at most D such that for 1 ≤ i1 < · · · < ir ≤ N , whether {vi1 , . . . , vir}
is an edge of H depends only on the sign-pattern of (f1(pi1 , . . . , pir), . . . , fm(pi1 , . . . , pir)).
More precisely, there is a function Φ : {+,−, 0}m 7→ {True,False} such that {vi1 , . . . , vir}
is an edge if and only if

Φ(sign(f1(pi1 , . . . , pir)), . . . , sign(fm(pi1 , . . . , pir))) = True.

Semi-algebraic graphs and hypergraphs of bounded complexity provide a general model to
study certain geometric structures, such as intersection and incidence graphs of geometric
objects, order types of point configurations, convex subsets of the plane, and so on. The
semi-algebraic Ramsey number Rt

r(s, n) denotes the smallest N such that any r-uniform
semi-algebraic hypergraph of complexity t on N vertices contains either a clique of size
s or an independent set of size n. Alon, Pach, Pinchasi, Radoičić and Sharir [1] proved
that Rt

2(n) = nΘ(1), which was extended by Conlon, Fox, Pach, Sudakov and Suk [6] to
Rt
r(n) = twr−1(nO(1)) for general r. In [6] and [9], matching lower bounds are provided in

case the parameters d,D,m are sufficiently large with respect to r. Specifically, for every
r ≥ 2, there exists t such that Rt

r(n) = twr−1(nΘ(1)). Here and later, the constants hidden
by the O(.),Ω(.),Θ(.) notation might depend on r, t and s, unless specified otherwise.

1.1 Asymmetric Ramsey numbers

In contrast, asymmetric semi-algebraic Ramsey numbers appear to be more mysterious in
case r ≥ 3. For uniformity r = 3, in the special subcase d = 1, it was established in [6]
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that Rt
3(s, n) < 2(logn)O(1) . Furthermore, if d ≥ 2, a result of Suk [19] shows that

Rt
3(s, n) < 22(log n)1/2+o(1)

= 2n
o(1)

.

However, the best known lower bound constructions provide only polynomial growth, which
leads to the natural conjecture that Rt

3(s, n) = nO(1), formulated in both [6] and [19]. Our
first main result refutes this conjecture.

Theorem 1.1. There exists t = (d,D,m) such that

Rt
3(4, n) > n(logn)1/3−o(1)

.

1.2 Semi-linear hypergraphs

As discussed above, if d,D,m are sufficiently large with respect to r, then Rd,D,m
r (n) =

twr−1(nΩ(1)). In the constructions provided by both [6] and [9], the parameters d and D
grow with r. In particular, [9] shows that one can take d = r − 3 for r ≥ 4. Further-
more, the Veronese mapping1 implies that every r-uniform semi-algebraic hypergraph of
complexity (d,D,m) is also of complexity (d′, r,m) for some d′ depending only on d and
D. However, this raises the question whether the upper bound Rd,D,m

r (n) < twr−1(nO(1))
can be significantly improved if we assume that d or D are small compared to r. In sup-
port of this, Bukh and Matoušek [4] showed that if d = 1, that is, when the vertices of
the hypergraph correspond to points on the real line, then any r-uniform semi-algebraic
hypergraph of complexity (1, D,m) containing no clique or independent set of size n has at
most 22O(n) vertices (in [4], the constant hidden by the O(.) notation might depend on the
defining polynomials, but a careful inspection of their proof yields that it can be bounded
only by a function of D,m and r as well). Also, this bound is the best possible if D and m
are sufficiently large. In this paper, we consider what happens if we bound the parameter
D instead, that is, the degrees of the defining polynomials.

A semi-algebraic hypergraph of complexity (d,D,m) is semi-linear, if D = 1, that
is, all defining polynomials are linear functions2 The study of semi-linear hypergraphs
was initiated by Basit, Chernikov, Starchenko, Tao and Tran [3], who considered these
hypergraphs in the setting of Zarankiewicz’s problem. There are many extensively studied
families of graphs that are semi-linear of bounded complexity, for example intersection
graphs of axis-parallel boxes in Rd, circle graphs, and shift graphs. Motivated by the
large literature (e.g. [2, 5, 8, 13, 17]) concerned with the Ramsey properties of such
families, Tomon [22] studied the Ramsey properties of semi-linear graphs and showed that
Rd,1,m

2 (s, n) ≤ n1+o(1) holds for every fixed s, d andm. This already shows a behavior unique
to semi-linearity, as a construction of Suk and Tomon [20] shows that Rd,2,m

2 (3, n) = Ω(n4/3)

1A Veronese mapping sends (x1, . . . , xd) ∈ Rd to some point whose coordinates are monomials of
x1, . . . , xd. E.g. (x1, x2, x3) 7→ (x2

1x2, x
2
2x

2
3, x1x2x3, x

3
3).

2To clarify, e.g. (x1, x2) 7→ 2x1 + 3x2 + 5 is a linear function, but (x1, x2) 7→ x1x2 + 3x1 + 3 is not
linear, it is only multi-linear.
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for some d and m. Tomon [22] also proposed the problem of determining the Ramsey
numbers of r-uniform semi-linear hypergraphs for r ≥ 3. Our second main result settles
this problem.

Theorem 1.2. For every triple of positive integers r, d,m, there exists c = c(r,m) > 0
such that

Rd,1,m
r (n) ≤ 2cn

4r2m2

.

Let us highlight that the bound in Theorem 1.2 does not depend on the dimension d,
only on the uniformity r and the number of polynomials m. From below, in case r ≥ 3, the
semi-linear Ramsey number grows at least exponentially, showing that Theorem 1.2 is sharp
up to the value of c and the exponent 4r2m2. Indeed, let H be the 3-uniform hypergraph
on vertex set {1, . . . , N} in which for x < y < z, {x, y, z} is an edge if x+ z < 2y. Then H
is semi-linear of complexity (1, 1, 1), and it is easy to show that ω(H), α(H) ≤ dlog2Ne+1.
Thus, R1,1,1

3 (n) ≥ 2Ω(n). We show that even faster growth can be achieved by examining
certain more convoluted constructions of higher uniformity.

Theorem 1.3. For every r ≥ 4, there exists a constant c > 0 such that

R1,1,1
r (n) ≥ 2cn

br/2c−1

.

2 A lower bound for Rt
3(4, n)

In this section, we outline the construction for Theorem 1.1, which builds on a variant of
the famous stepping-up lemma of Erdős and Hajnal (see [16]).

Given distinct α, β ∈ {0, 1}N , let δ(α, β) := min{i : α(i) 6= β(i)}. Let ≺ be the
lexicographical order over {0, 1}N , i.e. α ≺ β ⇔ α(δ(α, β)) < β(δ(α, β)). An important
property of δ(·, ·) is that for any α1 ≺ · · · ≺ α`, there is a unique i which achieves the
minimum of δ(αi, αi+1).

Now we define our notion of the step-up.

Definition 1. The step-up of a graph G is the 3-uniform hypergraph H on vertex set
{0, 1}N defined as follows. For α, β, γ ∈ {0, 1}N with α ≺ β ≺ γ, we have {α, β, γ} ∈ E(H)
if and only if δ(α, β) < δ(β, γ) and {δ(α, β), δ(β, γ)} ∈ E(G).

The next lemma relates the clique and independence numbers of both graphs.

Lemma 2.1. ω(H) ≤ ω(G) + 1 and α(H) ≤ Nα(G) + 1.

By a construction of Suk and Tomon [20], there exists a semi-algebraic graph G
on Θ(m4/3) vertices with ω(G) = 2 and α(G) ≤ 2m for all m ∈ N. The methods
in [6, 9] show that the step-up of G, denoted by H, remains semi-algebraic. Pick m

such that n = Θ((m4/3)2m), i.e. m = Ω(log n/ log log n). Then, |V (H)| = 2Θ(m4/3) =

nΩ((logn)1/3−o(1)), ω(H) = 3, α(H) ≤ |V (G)|2m + 1 < n. This finishes the proof.
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3 Semi-linear hypergraphs

In this section, we outline the proof of Theorem 1.2, i.e. Rd,1,m
r (n) ≤ 2O(n4r2m2

). Let H be
an r-uniform semi-linear hypergraph on vertex set [N ] of complexity (d, 1,m). We observe
that H is the Boolean combination of 2m semi-linear hypergraphs H1, . . . , H2m, where
Hi is defined by a matrix Pi ∈ Rr×N as follows: for 1 ≤ q1 < · · · < qr ≤ N , we have
{q1, . . . , qr} ∈ H if and only if

∑r
i=1 P (i, qi) < 0. Therefore, our goal is to find C ⊆ [N ] of

size (logN)Ωr,m(1) such that for each i ∈ [2m], C is either a clique or an independent set in
Hi. We will find such a C by trimming and transforming our matrices in several steps.

For δ ∈ R, the shift of a sequence x1, . . . , xN by δ is the sequence x1 + δ, . . . , xN + δ.
Given ∆ > 1 and τ ∈ {−,+}×{↘,↗}, a sequence x1, . . . , xN is called (∆, τ)-exponential if
for all i ∈ [N−1], we have 0 < xi < xi+1/∆ in the case τ = (+,↗); 0 < xi+1 < xi/∆ in the
case τ = (+,↘); 0 < (−xi) < (−xi+1/∆) in the case τ = (−,↗); 0 < (−xi+1) < (−xi/∆)
in the case τ = (−,↘). Also, say that a sequence is ∆-exponential if it is (∆, τ)-exponential
for some τ ∈ {−,+} × {↘,↗}.

Lemma 3.1. For every q there exists c = c(q) > 0 such that the following holds. Let
M ∈ Rq×N be a matrix such that no row contains repeated elements. Then M contains a
q ×N ′ sized submatrix for N ′ = c(logN)1/q such that every row of M is 2q-exponential.

Applying Lemma 3.1 to the concatenation of the matrices P` for ` ∈ [2m], we find a
subset I ⊂ [N ] of size N ′ = c(logN)1/2mr (say I ′ = [N ′]) such that for each `, the submatrix
P ′` of P` induced by columns in I is 2r-exponential. Let H ′ be the subgraph of H induced
by I, and H ′i be the subgraph of H ′i induced by I. It is easy to see that every H ′` is defined
by P ′`, and that H ′ is a Boolean combination of H ′1, . . . , H ′2m. Theorem 1.2 is then an easy
consequence of the following key lemma, which guarantees C ⊂ I of size (N ′)Ωr,m(1) such
that for all i ∈ [2m], C is either a clique or an independent set in H ′i.

Lemma 3.2. For every r and k, there exists c = c(r, k) > 0 such that the following holds.
Let P1, . . . , Pk be r × N matrices where all rows are 2r-exponential. Then there exists
C ⊂ [N ] such that |C| ≥ cN

1
rk−k+1 and C is a clique or an independent set in Hi for every

i ∈ [k].

The proof of this lemma builds on the following observation. Using that each row of
P` is (2r)-exponential, whether {q1, . . . , qr} is an edge of H` depends (essentially) on the
maximum of H`(1, q1), . . . , H`(r, qr). Further details are omitted.
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