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Abstract

For every sufficiently well-behaved function g : R≥0 → R≥0 that grows at least
linearly and at most exponentially we construct a tree T of uniform volume growth
g, that is,

C1 · g(r/4) ≤ |BG(v, r)| ≤ C2 · g(4r), for all r ≥ 0 and v ∈ V (T ),

with C1, C2 > 0 and where BG(v, r) denotes the ball of radius r centered at a vertex
v. In particular, this yields examples of trees of uniform intermediate (i.e., super-
polynomial and sub-exponential) volume growth.

We use this construction to provide first examples of unimodular random rooted
trees of uniform intermediate growth, answering a question by Itai Benjamini. We
find a peculiar change in structural properties for these trees at growth rlog log r.

Our results can be applied to obtain triangulations of R2 with varied growth be-
haviours and a Riemannian metric on R2 for the same wide range of growth behaviors.

DOI: https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-091

1 Introduction
For a graphG, a vertex v ∈ V (G) and r ≥ 0, the set BG(v, r) := {w ∈ V (G) | dG(v, w) ≤ r}
is the ball of radius r around v. The growth of these balls as r increases is the growth
behavior or volume growth of G at the vertex v. The two extreme cases of growth are the
regular trees (of exponential growth) and the lattice graphs (of polynomial growth).
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It is an ongoing endeavor to map the growth behaviors in various graph classes, the
most famous example being Cayley graphs of finitely generated groups (see e.g. [8]). Major
results in this regard are the existence of Cayley graphs of intermediate growth (that is,
super-polynomial but sub-exponential) [7], and the proof that vertex-transitive graphs only
have polynomial growth for integer exponents [11, Theorem 2].

Vertex-transitive graphs have the same growth at every vertex. In other graph classes
this must be imposed more explicitly: following [5], a graph G is of uniform growth
g : R≥0 → R≥0 if there are constants c1, C1, c2, C2 ∈ R>0 so that

C1 · g(c1r) ≤ |BG(v, r)| ≤ C2 · g(c2r) for all r ≥ 0 and v ∈ V (G). (1.1)

In this article we construct trees for a wide range of growth behaviors, including inter-
mediate and polynomial with non-integer exponents. The question of uniform intermediate
growth for trees was initially posed by Itai Benjamini (private communication) in the con-
text of unimodular random trees. However, even the existence of deterministic trees of
such growth was unknown at that time.

We firstly verify the existence in the deterministic case for various growth behaviors.
We then demonstrate that our construction extends to unimodular random rooted trees
with the same wide range of growth behaviors, answering Benjamini’s question in the
positive. Finally, we probe the structure of these unimodular trees and find a threshold
phenomenon happening at growth roughly rlog log r. As an application, in Section 4.1 we
obtain triangulations of the plane, as well as Riemannian metrics on R2, both with the
same wide range of growth behaviors.

Our work follows a history of studies on the growth rate of graphs, and particular-
ly of trees. The first (unimodular) trees of uniform polynomial growth were constructed
by Benjamini and Schramm [6]. Special attention to exponential growth for trees was
given by Timár [10], focusing on the existence of a well-defined exponential rate. Recent
advancement in this regard was made by Abert, Fraczyk and Hayes [1]. Intermediate but
not necessarily uniform growth in trees has been studied by Amir and Yang [3] as well as
the references given therein.

1.1 Motivation

The interest in such trees originates in the observation, made by physicists, that planar
triangulations can have non-quadratic uniform growth [2, 4]. In their landmark paper [6]
Benjamini and Schramm explained this curious phenomenon by constructing trees of every
polynomial growth and then demonstrating how any tree of a particular growth can be
turned into such a triangulation with a similar growth:

Construction 1.1. Suppose T is a tree of maximum degree ∆̄. Fix a triangulated sphere
with at least ∆̄ pairwise disjoint triangles. Take copies of this sphere, one for each vertex
of T , and identify two spheres along a triangle when the associated vertices are adjacent in
T . This yields a planar triangulation. If T is of uniform growth g, so is this triangulation.
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As we explain at the concluding remarks, our trees can be similarly adapted to produce
triangulations of the plane.

1.2 Main results

We show the existence of deterministic and unimodular random rooted trees with growth
g : R≥0 → R≥0 for various functions between polynomial and exponential growth:

Theorem 1. If g : R≥0 → R≥0 is super-additive and (eventually) log-concave, then there
exists a deterministic tree T of uniform growth g.

Theorem 2. If g : R≥0 → R≥0 is super-additive and (eventually) log-concave, then there
exists a unimodular random rooted tree (T , ω) of uniform growth g.

Super-additivity and log-concavity formalize the constraints on prescribed growth to
be “at least linear” and “at most exponential” and prevent certain pathologies, such as
unbounded degree or too strong oscillations in the growth behavior. Concretely, a function
g is super-additive if g(x+y) ≥ g(x)+g(y) for every x, y in its domain, and it is log-concave
if g(tx+ (1− t)y) ≥ g(x)tg(y)1−t for every x, y in its domain and every t ∈ (0, 1).

We also prove a structure theorem (Theorem 3) that describes the structure of our
unimodular trees depending on the prescribed growth rate. We show that the growth rate
rlog log r acts as a threshold, with “faster-growing” trees being apocentric (not unlike the
classical canopy tree) and “slower-growing” trees being balanced (with a precise definition
of these terms in Construction 2.3). In both cases, the trees are a.s. 1-ended for most
prescribed growths.

2 The construction

For each integer sequence δ1, δ2, δ3, ... ∈ N with δn ≥ 1 we construct a tree T = T (δ1, δ2, ...).
The choice of sequence will determine the growth rate of T .

Construction 2.1. The trees Tn are defined recursively. In each tree we distinguish
two special types of vertices: a center, and the apocentric vertices. Both will be defined
alongside the trees:

(i) T0 is a single vertex, which is the center of T0 and an apocentric vertex.

(ii) Tn is built from δn + 1 disjoint copies τ0, τ1, ..., τδn of Tn−1 that we join into a tree by
adding the following edges: for each i ∈ {1, ..., δn} add an edge between the center
of τi and some apocentric vertex of τ0.

There is a choice in selecting these apocentric vertices of τ0 (and we can choose the
same apocentric vertex more than once), but we require that these adjacencies be
distributed in a uniform way among the apocentric vertices of τ0.

The center of Tn is that of τ0; the apocentric vertices of Tn are those of τ1, ..., τδn .
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Figure 1: The first four trees T0, ..., T3 defined by δn := n+ 2. The ringed vertex is the center,
and the white vertices are the apocentric vertices in the respective tree. The highlighted subgraph
is the central copy τ0 in Tn. The dashed lines are the new edges connecting the copies to form a
single tree.

Observation 2.2.

(i) Tn has exactly (δ1 + 1) · · · (δn + 1) vertices;

(ii) Tn has exactly δ1 · · · δn apocentric vertices, all of which are leaves of the tree;

(iii) the distance from the center of Tn to any of its apocentric vertices is 2n − 1.

Construction 2.3. For each n ≥ 1 identify Tn with one of its copies τ0, τ1, ..., τδn+1 in
Tn+1. In this way we obtain an inclusion chain T0 ⊂ T1 ⊂ T2 ⊂ · · · and the union
T = T (δ1, δ2, ...) :=

⋃
n≥0 Tn is an infinite tree.

For later use we distinguish three natural types of limits:

• the centric limit always identifies Tn with the “central copy” τ0 in Tn+1. This limit
comes with a designated vertex x∗ ∈ V (T0) ⊂ V (T ), the global center.

• apocentric limits always identify Tn with an “apocentric copy” τi in Tn+1.

• balanced limits make infinitely many central and apocentric identifications.

We show that for a suitable sequence δ1, δ2, δ3, ... ∈ N and independently of the type
of the limit, the tree T has a uniform volume growth, and that with a deliberate choice
of the sequence we can model a wide range of growth behaviors, including polynomial,
intermediate and exponential. This proves Theorem 1.

The following example computation gives an idea of the connection between the se-
quence δ1, δ2, δ3, ... ∈ N and the growth of T . Let T be the centric limit with global center
x∗ ∈ V (T ). By Observation 2.2 (iii) the ball of radius r = 2n − 1 in T , centered at x∗, is
exactly Tn ⊂ T . By Observation 2.2 (i) it follows that

|BT (x∗, r)| = |Tn| = (δ1 + 1) · · · (δn + 1). (2.1)
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So, if we aim for BT (x∗, r) ≈ g(r) with a given growth function g : R0 → R0, then (2.1)
suggests to use a sequence δ1, δ2, δ3, ... ∈ N for which (δ1 + 1) · · · (δn + 1) approximates
g(2n − 1). It turns out to be more convenient to approximate g(2n), so

δn + 1 ≈ g(2n)

g(2n−1)
, (2.2)

where we introduce an error when rounding the right side to an integer.
To establish uniform growth with a prescribed growth rate g it remains to prove:

• the error introduced by rounding the right side of (2.2) is manageable;

• an estimation close to (2.1) holds for radii r that are not of the form 2n − 1;

• an estimation close to (2.1) holds for general limit trees and around vertices other
than a designated “global center”.

We address each of these points in our paper for g super-additive and log-concave.
We close with three examples demonstrating the versatility of Construction 2.3.

Figure 2: T (3, 3, ...) embedded in the square of the 2D lattice.

Example 2.4 (Polynomial growth). If we aim for polynomial growth g(r) = rα, α ∈ N
then the heuristics (2.2) suggests to use a constant sequence δn := 2α − 1.

The corresponding trees Tn embed in the α-th powerof the α-dimensional lattice.
More generally, for any constant sequence δn := c we expect to find polynomial volume

growth, potentially with a non-integer exponent log(c+ 1).

Example 2.5 (Exponential growth). For δn := d2
n−1
, d ∈ N the centric limit T is the d-ary

tree,
of exponential volume growth. Using (2.1) for r = 2n we find

|BT (x∗, r − 1)| = (δ1 + 1) · · · (δn + 1) =
n∏
k=1

(
d2

k−1

+ 1
)

=
2n−1∑
i=0

di =
d2

n − 1

d− 1
=
dr − 1

d− 1
.
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...

Figure 3: The binary tree constructed from Construction 2.1 using the sequence δn = 22
n−1 .

Extrapolating from Example 2.4 and Example 2.5, it seems reasonable that unbounded
sequences δ1, δ2, δ3, ... with a growth sufficiently below doubly exponential result in inter-
mediate volume growth.

Example 2.6 (Intermediate growth). For δn := (n+ 3)α − 1, α ∈ N we can compute this
explicitly (see Figure 1 for the case α = 1). If T is the centric limit with global center
x∗ ∈ V (T ) and r = 2n, then:

|BT (x∗, r − 1)| = (δ1 + 1) · · · (δn + 1) = (1
6
(n+ 3)!)α ∼ (n!n3)α ∼ (nne−nn7/2)α

= rα log log rr−α/ ln 2 (log r)7α/2

Indeed, by Theorem 1, this choice of sequence leads to a tree of uniform intermediate
volume growth. Trees constructed from δn ∼ nα present an interesting boundary case in
Section 3 when we discuss unimodular random trees (see also Theorem 3).

3 Passing to unimodular random trees
A rooted graph is a pair of the form (G, o), where G is a graph and o ∈ V (G) is “a root”. For
a definition of random rooted graphs we follow [6]: firstly, there is a natural topology on
the set of rooted graphs – the local topology – induced by the metric

dist
(
(G, o), (G′, o′)

)
:= 2−R if BG(o, r) ∼= BG′(o

′, r) for all 0 ≤ r ≤ R

and BG(o,R + 1) � BG′(o
′, R + 1),

where it is understood that BG(o, r) is rooted at o and that isomorphisms between
rooted graphs preserve roots.

A random rooted graph (G, o) is a Borel probability measure (for the local topology) on
the set of locally finite, connected rooted graphs. We call (G, o) finite if the set of infinite
rooted graphs has (G, o)-measure zero. If in addition the conditional distribution of the
root in (G, o) over each finite graph is uniform, then (G, o) is called unbiased.

Given a sequence (Gn, on) of unbiased random rooted graphs, a random rooted graph
(G, o) is said to be the Benjamini-Schramm limit of (Gn, on) if for every finite rooted graph
(H,ω) and natural number r ≥ 0 we have

lim
n→∞

P
(
BGn(on, r)

∼= (H,ω)
)

= P
(
BG(o, r) ∼= (H,ω)

)
.
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If it exists, (G, o) is the unique limit. If a random rooted graph is the Benjamini-Schramm
limit of some sequence, we say that it is sofic.

One can show that a set of graphs of uniformly bounded degree is compact in the
local topology, and thus, a sequence (Gn, on) of uniformly bounded degree always has a
convergent subsequence.

We say that a random rooted graph (G, o) is of uniform growth g : R≥0 → R≥0, if there
are constants c1, C1, c2, C2 ∈ R>0 so that a.s.

C1 · g(c1r) ≤ |BG(o, r)| ≤ C2 · g(c2r), for all r ≥ 0.

A random rooted graph (G, o) is unimodular if it obeys the mass transport principle,
i.e.,

E
[∑
x∈V (G)

f(G, o, x)
]

= E
[∑
x∈V (G)

f(G, x, o)
]

for every transport function f , which, for our purpose, are sufficiently defined as Borel
functions over doubly-pointed graphs that output non-negative real numbers (for a precise
definition we direct the reader to [9]).

The function f simulates mass transport between vertices, and the mass transport
principle states, roughly, that the root o sends, on average, as much mass to other vertices
as it receives from them. Unimodular graphs are significant in the theory of random graphs
and encompass some important classes, notably, all sofic graphs.

Proposition 3.1. Let g : R≥0 → R≥0 be super-additive and log-concave. Let Tn be as
in Construction 2.1. Then the sequence (Tn, on) has a subsequence that converges in the
Benjamini-Schramm sense to a unimodular random rooted tree of uniform growth g.

This proves Theorem 2. We examine the structure of the Benjamini-Schramm limit T :

Theorem 3 (Structure Theorem).

(i) If g = Ω(rα log log r), α > 1, then (T , ω) is a.s. an apocentric limit. In particular, it is
1-ended.

(ii) If g = O(rlog log r), then (T , ω) is a.s. a balanced limit and it is a.s. 1-ended or 2-ended.
In particular, if δn 6= 1 eventually, then (T , ω) is a.s. 1-ended and the probability for
being isomorphic to any particular tree is 0.

The significance of the distinction worked out in Theorem 3 becomes more apparent
with an example: the Benjamini-Schramm limit of (Tn, on) for a sufficiently fast growing
function g (including intermediate) can be a.s. isomorphic to a single deterministic tree.
Such a limit can be seen as deterministic trees with a randomly chosen root.

Example 3.2. Define recursively δ1 := 1, δ2 := 2 and δn+1 := δnδn−1. Hence, δn = 2Fn ,
for all n ≥ 0, where Fn denotes the n-th Fibonacci number.

Let Tn, n ≥ 0 be the sequence of trees according to Construction 2.1.
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Then (Tn, on) has a subsequence that converges in the Benjamini-Schramm sense to a
random rooted tree (T , ω) of uniform volume growth.

From |Tn| = (δ1 + 1) · · · (δn + 1) we have, for r := 2n,
1
2
Drα≤ |Tn| ≤ 1

2
r ·Drα, with D := 2ϕ

2/
√
5 ≈ 2.251 and α := logϕ ≈ 0.6942.

Here ϕ ≈ 1.618 denotes the golden ratio. The growth is therefore intermediate.

We claim that (T , ω) is a.s. isomorphic to a particular deterministic tree: from The-
orem 3 we can see that (T , ω) is an apocentric limit. We show that the Tn are highly
symmetric in that any two apocentric copies τ, τ ′ ≺n−1 Tn are in fact indistinguishable
by symmetry. In consequence, there exists only one possible inclusion chain leading to an
apocentric limit, and T is the unique tree obtained in this way.

Unimodular random rooted trees that are a.s. isomorphic to a unique tree of smaller
uniform growth can be constructed by setting δn+1 := δnδn−1 for only some n, and δn+1 :=
δn otherwise.

In contrast, Benjamini-Schramm limits for g of growth below rlog log r have measure zero
on every countable set of trees, hence this approach cannot yield examples with uniform
growth. It remains to ask whether this is an artifact of our construction or a general
phenomenon.

4 Concluding remarks and open questions

4.1 Planar triangulations

Having established the existence of trees for various growth rates, we can use Construc-
tion 1.1 to conclude the existence of planar triangulations with the same range of growth
behaviors. In fact, we can say more: previously known triangulations of polynomial growth
are planar, but not necessarily triangulations of the plane, i.e., they are not necessarily
homeomorphic to R2. For this to be true, the tree T needs to be 1-ended, which is the
case e.g. for apocentric limits obtained from a sequence of Construction 2.1. Choosing
a suitable metric on each triangle then also yields a Riemannian metric on R2 with the
respective growth behavior.

4.2 Subgraphs of uniform growth

At the early stages of our research, the approach for constructing trees of uniform inter-
mediate growth was to start from just any graph of intermediate growth (such as a Cayley
graph of the Grigorchuk group [7]), and extract a spanning tree that inherits this growth in
some way. Ironically, working out the details of this extraction led to an understanding of
the desired trees that allowed us constructing them without a need for the ambient graph.
Still, we ask:

Question 4.1. Given a graph G of uniform growth g, is there a spanning tree (or just any
embedded tree) of the same uniform growth?
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4.3 Beyond the construction

The unimodular random rooted trees of uniform volume growth constructed in Section 3
were obtained as Benjamini-Schramm limits of the sequence Tn. We found a threshold
at growth rlog log r and it remains open whether this is an artifact of our construction or
whether it points to a fundamental phase change phenomenon in unimodular trees of
uniform growth.

Question 4.2. To what extent are unimodular trees with growths on either side of the
threshold rlog log r structurally different?
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