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Abstract

We consider the following question by Balister, Győri and Schelp: given 2n−1

nonzero vectors in Fn
2 with zero sum, is it always possible to partition Fn

2 into pairs
such that the difference between the two elements of the i-th pair is equal to the i-th
given vector? An analogous question in Fp was resolved by Preissmann and Mischler
in 2009. In this paper, we prove the conjecture in Fn

2 in the case when there are at
most n− 2 log n− 1 distinct values among the given differences, and also in the case
when at least a fraction 28

29 of the differences are equal.
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1 Introduction
We consider the following conjecture of Balister, Győri and Schelp [2] from 2008:

Main conjecture 1.1. Let n ≥ 2 be an integer and m = 2n−1. If the nonzero difference
vectors d1, d2, . . . , dm are given in Fn

2 such that
∑m

i=1 di = 0 (and the di’s are not
necessarily distinct), then Fn

2 can be partitioned into disjoint pairs {ai,bi} (1 ≤ i ≤ m)
such that ai − bi = di holds for every i.

∗ELTE Linear Hypergraphs Research Group, Eötvös Loránd University, Budapest, Hungary. E-mail:
benoke98@student.elte.hu. Supported by the ÚNKP, New National Excellence Program of the Ministry
for Innovation and Technology from the source of the National Research, Development and Innovation
Fund.

669



Finding pairwise disjoint vector pairs in F n
2 with a prescribed sequence of differences 670

In 2008, Bacher [1] has independently posed another analogous version of this conjec-
ture, where instead of Fn

2 , we partition the elements of Fp\{0} into pairs, where p is an odd
prime, and there is no restriction on the sum of the given (nonzero) differences. For this
case, Preissmann and Mischler gave a positive answer [9]; their method relies on summing
the values of an appropriate multivariate polynomial over Fp.

Theorem 1.2 (Preissmann, Mischler). Let p be an odd prime and M = p−1
2

. If in Fp, the
nonzero differences d1, d2, . . . , dM are given, then Fp \ {0} can be partitioned into disjoint
pairs {ai, bi} (1 ≤ i ≤ M) such that for each i, ai − bi = di holds.

Later, Kohen and Sadofschi [6] gave a new proof of this claim using the Combinatorial
Nullstellensatz.

The statement can also be investigated for other cyclic groups as well. The following
conjecture of Adamaszek pertaining to cyclic groups of even order has been proven by
Kohen and Sadofschi [7]:

Theorem 1.3 (Kohen, Sadofschi). Let n = 2M be even. If the elements d1, d2, . . . , dM ∈
(Z/nZ)× are arbitrarily given, then Z/nZ can be partitioned into disjoint pairs {ai, bi} such
that for each i, we have ai − bi = di.

Another way to generalize Theorem 1.2 is if we consider the problem for Fn
p \{0} instead

of Fp\{0}. Karasev and Petrov showed that in this case, the same statement does not hold
(by considering the case when every di is equal to the same nonzero vector d). However
they have shown the following claim [5, Theorem 3]:

Theorem 1.4 (Karasev, Petrov). Let p be an odd prime and M = pn−1
2

. If the sets
{d1,1, . . . , d1,n}, {d2,1, . . . ,d2,n}, . . . , {dM,1, . . . ,dM,n} are given in Fn

p such that each set
is a basis of Fn

p , then there exists a function g : [M ] → [n] such that Fn
p \ {0} can be

subdivided into disjoint pairs {ai,bi}, 1 ≤ i ≤ M with ai − bi = di,g(i) for every i.

If we investigate the statement in Fn
2 instead of Fn

p , then to obtain a perfect matching,
we also need to include the zero vector in the set of elements to be matched. Even in this
case, the claim does not hold for arbitrary nonzero differences, as the sum of differences
has to be equal to the sum of all elements of the vector space, which is zero. By the main
conjecture, this would be a sufficient condition for an adequate perfect matching to exist.

The authors of [2] have also verified this conjecture for the case n ≤ 5, and they have
proved the main conjecture in the following special case [2, Theorem 4]:

Theorem 1.5 (Balister, Győri, Schelp). The main conjecture is true in the case when the
vectors d1,d2, . . . ,dm

2
are all equal, and for every integer 1 ≤ i ≤ m

2
we have d2i−1 = d2i.

In 2021, Correia, Pokrovskiy and Sudakov [3] published the following result:

Theorem 1.6 (Correia, Pokrovskiy, Sudakov). Let G be a multigraph whose edges are
t-coloured, so that each colour class is a matching of size at least t + 20t15/16. Then there
exists a rainbow matching (that is, a matching with t edges of all distinct colours).
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Applying this result to the graph on the vertex set Fn
2 with colour class i consisting of

the edges between pairs of difference di, we get that for any M ≤ 1
2
N −C ·N15/16 nonzero

differences di, where N = 2n, we can find disjoint pairs {ai,bi} such that ai − bi = di.
However this method does not result in perfect matchings.

Gao, Ramadurai, Wanless and Wormald [4] conjectured that Theorem 1.6 holds for
t+2 in place of t+20t15/16, which would resolve this problem for any M ≤ 1

2
N−2 nonzero

difference vectors.
In this paper, we prove the main conjecture in the following two special cases:

• when the number of distinct values among the 1
2
N difference vectors is at most

n− 2 log n− 1;

• and when n is sufficiently large and at least a fraction 28
29

of the difference vectors are
all equal.

2 Perfect matching in the case of few difference classes
Let the nonzero differences d1,d2, . . . , dm be given such that

∑m
i=1 di = 0, where m = 2n−1.

The collections containing all differences equal to a fixed vector d will be called difference
classes. For a given configuration {d1,d2, . . . ,dm}, let t denote the number of nonempty
difference classes. We would like to give a value T (n) as large as possible, for which we
can guarantee the existence of a suitable perfect matching of Fn

2 in the case t ≤ T (n).
In the case t = 1 the task is trivial: take the ⟨d⟩-cosets of Fn

2 for the difference d.
In the case t = 2, the task can be solved using Theorem 1.5, as

∑
di = 0 means that

both difference classes have even size. So we have the structure that half of the differences
are the same and the rest of the differences can be partitioned into equal-valued pairs.

Theorem 2.1. The main conjecture is true in the case when the number of difference
classes is at most n− 2 log n− 1.

Lemma 2.2. Let n ≥ 4, and let Pn denote the power set of [n] as a poset ordered by
containment. Let H be a subset of Pn of size at most n+1, for which ∅ ̸∈ H and [n] ̸∈ H.
Moreover assume that H does not contain all of the one-element sets and does not contain
all of the n− 1 element sets either. Then Pn \H contains a chain of size n+ 1.

Proof sketch. This can be proved using the fact that Pn admits a decomposition into dis-
joint symmetric chains (i.e. chains containing one set of each integer cardinality between
k and n− k for some k); the proof of this fact can be found in [8, Proposition 2].

Proof sketch of theorem 2.1. Let the distinct values of the given differences be u1, u2, . . . ,
ut where for each 1 ≤ i ≤ t, ui appears ni times with n1 ≥ n2 ≥ · · · ≥ nt.

Let U = ⟨u1, . . . ,ut⟩ and k = dimU . (Then k ≤ t.) We can assume that k ≥ 2, as
otherwise t = 1, a case already seen. Call the U -cosets of Fn

2 layers. We create perfect
matchings of each layer separately, and will not modify any finished layers later. Our
algorithm consists of 3 phases.
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Phase 1: We create perfect matchings in some (less than t) layers in such a way that
an even number of vectors will remain in each difference class.

Phase 2: We create perfect matchings in some (less than t) layers in such a way that
in each difference class, the number of remaining vectors will be divisible by 2k−1.

Phase 3: All of the remaining differences are used to create homogeneous layers (i.e.
layers consisting of differences from only one class).

Phase 1. Let H = {ui : 2 ≤ i ≤ t, ni ≡ 1 (mod 2)}, and we use the notation u = u1.
We call a subset S of H a circuit if its elements are linearly dependent mod u, and this

property does not hold for any proper subset of S. A circuit S has good parity if the sum
of its elements is |S|u, and bad parity if the sum of its elements is (|S|+ 1)u.

As we have
∑

niui = 0, the sum of the elements of H is equal to n1u, so it is 0 mod u.
We will apply the following step repeatedly: as long as H is nonempty, we select some of
its elements (at least three of them), and we will create a perfect matching of a full layer
using one copy of each of the selected vectors, and a suitable number of copies of u. The
vectors of H used in this process will be removed from H. When all elements of H are
depleted, we move on to Phase 2.

A sequence (v1,v2, . . . ,vi) consisting of nonzero vectors in H is diverse if 0, v1, v1+v2,
. . . , v1 +v2 + · · ·+vi−1 are all distinct mod u. If (v1,v2, . . . ,vi) is a diverse sequence for
which v1 + v2 + · · · + vi = iu holds, then we can make a layer with one copy of each of
v1, . . . , vi as differences, and all remaining differences being u.

In each step, take A to be a subset of H of minimal size with 0 sum mod u. If A has
good parity, then any ordering of it is diverse, and a layer can be created. If it has bad
parity, then from H \ A we can select another minimal-size subset B with 0 sum mod u,
which can also be assumed to have bad parity. Then A∪B can be put into a diverse order
(by applications of Lemma 2.2), which will be used to create the layer.

Phase 2. For each 2 ≤ i ≤ n, if the number of remaining copies of ui has a remainder
mi mod 2k−1, then a single layer containing mi copies of ui and 2k−1 −mi copies of u is
made, which is possible by the main conjecture for two difference classes.

Phase 3. As the number of remaining vectors in each class is divisible by 2k−1, this
phase can be trivially performed, completing the required perfect matching of Fn

2 .
By calculation, it can be seen that altogether we used 4

3
(t− 1) · 2k−1 copies of u during

the first two phases, which is less than 2n−1

t
, and so less than n1, as required.

3 Perfect matching in the case of many equal vectors
In this chapter, we resolve the main conjecture (for sufficiently large n) in the special
case when at least a fraction 28

29
of the difference vectors are all equal, and the others are

arbitrary. So in contrast to the theorem of Balister, Győri and Schelp (see Theorem 1.5),
here we do not require that all differences appear an even number of times.

Lemma 3.1. Let G be a finite abelian group, and let X ⊆ G. Then in G, we can select at
least |G|

|X|(|X|−1)+1
pairwise disjoint translates of X.
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Proof idea. Keep choosing translates of X greedily which are disjoint from the previously
chosen ones.

Remark 3.2. If the group G has exponent 2, the lemma can be improved to say that at
least |G|

(|X|
2 )+1

pairwise disjoint translates of X can be selected.

Lemma 3.3. Let n ≥ 2 and a ≥ t ≥ 2 be integers, for which
∑⌊t/2⌋

i=0

(
a
i

)
> 2n. Then in Fn

2 ,
among any a vectors one can find at most t which are linearly dependent.

Proof idea. From the assumption, there exist two distinct subsets of the given vectors of
size ≤

⌊
t
2

⌋
with the same sum. Take the symmetric difference of these two subsets.

Theorem 3.4. The main conjecture is true in the case when at least a fraction 28
29

of the
differences are all equal, and n is sufficiently large.

Proof sketch. Let u ∈ Fn
2 appear more than 28

29
m times among the given differences d1, d2,

. . . , dm. (Here m = 1
2
· 2n.) Let H denote the multiset of vectors di not equal to u. Then

|H| < 1
29
m.

We will partition Fn
2 into pairs in the following way. In each step we select some

elements (v1, v2, . . . , vi) of the multiset H, and among the elements of Fn
2 not yet used,

for each 1 ≤ j ≤ i we select a pair of elements with difference vj (so that these pairs
are disjoint from each other). The set of elements used in each step will be a union of
some ⟨u⟩-cosets; so at the end of the process, after having used all elements of H, all the
remaining differences will be equal to u, and these can be assigned to one coset each.

Similarly to the notions used in the proof of Theorem 2.1, define diverse sequences, and
circuits and their parity.

If the nonzero vectors (v1,v2, . . . ,vi) form a diverse sequence, and v1+v2+· · ·+vi = iu,
then we can take i pairwise disjoint vector pairs which use each vector in the given sequence
as a difference precisely once, and whose union is equal to the union of some ⟨u⟩-cosets.
In each step of the partitioning of Fn

2 , we will use such a pattern.
We partition H into circuits by always removing the smallest circuit from it, and then

in this partition, we pair up bad circuits according to increasing order of their size. Then
similarly to the proof of Theorem 2.1, each good circuit, or pair of bad circuits can be
arranged in a diverse order. We will use these diversely-ordered classes in decreasing order
of size, always trying to find a translate of the corresponding vector set in Fn

2 that does
not contain any previously-used vectors. Classes of size greater than 8 will be called large,
and otherwise a class is called small.

When we selected the circuits Ci in H (always selecting the smallest possible circuit
within the remaining vectors), then because of Lemma 3.3, as long as the number of
remaining vectors (a) fulfilled the inequality

(
a
0

)
+
(
a
1

)
+
(
a
2

)
> 2n, we always found a circuit

of size at most 4, leading to small classes. Therefore the total size of large classes is at
most 4 · 2n/2.

For sets of vectors X corresponding to large classes, by a calculation via Remark 3.2,
we can find more disjoint translates of X in Fn

2 then there are previously-used points, hence
there will always be a translate of X which is completely unused.
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For X corresponding to small classes, the total size of previous classes is less than 1
58
·2n,

and calculating by Remark 3.2, using the fact that |X|
2

≤ 8, there will again be a sufficient
number of pairwise disjoint translates of X.
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