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Abstract

The systematic study of Turán-type extremal problems for edge-ordered graphs
was initiated by Gerbner et al. in 2020. Here we characterize connected edge-ordered
graphs with linear extremal functions. This characterization is similar in spirit to
results of Füredi et al. (2020) about vertex-ordered and convex geometric graphs.
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1 History
Turán-type extremal graph theory asks how many edges an n-vertex simple graph can

have if it does not contain a subgraph isomorphic to a forbidden graph. We introduce the
relevant notation here.

Definition 1.1. We say that a simple graph G avoids another simple graph H, if no
subgraph of G is isomorphic to H. The Turán number ex(n,H) of a forbidden finite
simple graph H (having at least one edge) is the maximum number of edges in an n-vertex
simple graph avoiding H.
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This theory has proved to be useful and applicable in combinatorics, as well as in
combinatorial geometry, number theory and other parts of mathematics and theoretical
computer science. Turán-type extremal graph theory was later extended in several direc-
tions, including hypergraphs, geometric graphs, convex geometric graphs, vertex-ordered
graphs, etc. Here we work with edge-ordered graphs as introduced by Gerbner, Methuku,
Nagy, Pálvölgyi, Tardos and Vizer in [4]. The several extension of extremal graph theory
each proved useful and applicable in different parts of mathematics and this also holds for
the (still new) edge-ordered version discussed here, see e.g. [2]. Let us recall the basic
definitions.

Definition 1.2. An edge-ordered graph is a finite simple graph G together with a linear
order on its edge set E. We often give the edge-order with an injective labeling L : E → R.
We denote the edge-ordered graph obtained this way by GL, in which an edge e precedes
another edge f in the edge-order (denoted by e < f) if L(e) < L(f). We call GL the
labeling or edge-ordering of G and call G the simple graph underlying GL.

An isomorphism between edge-ordered graphs must respect the edge-order. A subgraph
of an edge-ordered graph inherits the edge-order and so it is also an edge-ordered graph.
We say that the edge-ordered graph G contains another edge-ordered graph H, if H is
isomorphic to a subgraph of G otherwise we say that G avoids H.

For a positive integer n and an edge-ordered graph H, let the Turán number ex<(n,H)
be the maximal number of edges in an edge-ordered graph on n vertices that avoids H.
Fixing the forbidden edge-ordered graph H, ex<(n,H) is a function of n and we call it the
extremal function of H. Note that this definition does not make sense if H has no edges,
so we insist that H is non-trivial, that is, it has at least one edge.

Braß, Károlyi and Valtr, [1] introduced convex geometric graphs while Pach and Tardos,
[7] introduced vertex-ordered graphs and studied their extremal theories. In both cases a
simple graph is given extra structure by specifying an order on their vertices (a cyclic order
for convex geometric graphs and a linear order for vertex-ordered graphs). Characterizing
the convex geometric or vertex-ordered graphs with a linear extremal function seems to
be beyond reach (so far), but Füredi, Kostochka, Mubayi and Verstraëte, [3] found such
a characterization for connected convex geometric graphs and also for connected vertex-
ordered graphs. The situation seems to be similar for edge-ordered graphs: while we could
not give a general characterization of edge-ordered graphs with linear extremal functions,
in Section 2 we characterize when connected edge-ordered graphs have linear extremal
functions. This characterization is also a dichotomy result: we show that whenever the
extremal function of a connected edge-ordered graph is not linear, it must be Ω(n log n).

2 Main result
In classical (unordered) extremal theory the following dichotomy is immediate:

Observation 1. If H is a forest, then ex(n,H) = O(n), otherwise ex(n,H) = Ω(nc) for
some c = c(H) > 1.
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The analogous statement fails for edge-ordered graphs: the paper [4] exhibits several
edge-ordered paths with extremal functions Θ(n log n). Therefore, when looking for an
analogous result for edge-ordered graphs, we have a choice to make. Either we want
to characterize the edge-ordered graphs with linear extremal functions, or the ones with
extremal functions that are almost linear, i.e., n1+o(1). In the latter direction the authors
of [4] formulated a conjecture that we recently verified, see [6]. The former problem seems
to be considerably more difficult as there is not even a reasonable conjecture characterizing
all edge-ordered graphs with a linear extremal function.

The first result in this direction appeared in the MSc thesis of the first author, [5]: he
gave a simple characterization of edge-ordered paths with linear extremal functions. In
this section we generalize this result and provide a characterization for connected edge-
ordered graphs with linear extremal functons, see Theorem 1. This is the same restriction
considered in [3] with respect to vertex-ordered and convex geometric graphs. Our theorem
also states that if the extremal function of a connected edge-ordered graph is not linear,
then it is Ω(n log n). Such a dichotomy does not hold for edge-ordered graphs in general
as [4] exhibits a (necessarily disconnected) edge-ordered graph whose extremal function is
Θ(nα(n)), where α is the inverse of the Ackermann function.

In order to formulate the characterization and dichotomy in Theorem 1 we need to
introduce some terminology. The reverse GR of an edge-ordered graph G is obtained from
G by reversing its edge-order. The order chromatic number χ<(G) of an edge-ordered graph
G is the smallest chromatic number χ(H) of a simple graph H such that all edge-orderings
of H contain G. (If no such H exists we write χ<(G) =∞). The order chromatic number
was introduced in the paper [4] to play the role of the (ordinary) chromatic number in a
version of the Erdős-Stone-Simonovits theorem for edge-ordered graphs, see Theorem 2.3
in [4]. For the purposes of our Theorem 1, one does not even have to apply this definition,
it is enough to apply Lemma 2.1 below that gives a simple characterization when the order
chromatic number of an edge-ordered forest is two. We call a vertex v of an edge-ordered
graph close if the edges adjacent to v form an interval in the edge-order.

Lemma 2.1 ([4]). A non-trivial edge-ordered forest has order chromatic number 2 if and
only if it has a proper 2-coloring such that all vertices in one of the color classes are close.

We call the edges e1 < e2 consecutive in an edge-ordered graph G if no edge e of G
satisfies e1 < e < e2. An edge-ordered graph G is a semi-caterpillar if the underlying simple
graph is a non-trivial tree and any pair of consecutive edges in G are either adjacent in G
or they are directly connected by an edge larger than both of them.

Theorem 1 (Dichotomy). If G or its reverse GR is a semi-caterpillar of order chromatic
number 2, then ex<(n,G) = O(n). For any other non-trivial connected edge-ordered graph
G we have ex<(n,G) = Ω(n log n).

Neither direction of the above dichotomy seems to follow from earlier results. For lack
of space we do not give the full proofs, just sketch the main concepts involved. We start
with saying a few words on semi-caterpillars.
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Recall that the definition of semi-caterpillars insists that each pair of consecutive edges
must either be adjacent or they are connected directly by a single larger edge. If we insist
that all pair of consecutive edges are adjacent in an edge-ordered tree, we obtain a sub-class
of semi-caterpillars, let us call these basic caterpillars. Note that the underlying simple
graphs of basic caterpillars are (conventional) caterpillars: each vertex is at distance at
most one from a single path. It is easy to prove that the order chromatic number of all
basic caterpillars is 2. Neither statement generalizes to all semi-caterpillars, but it is not
hard to prove that all vertices of a semi-caterpillar are at distance at most two of a single
path. See Figure 1 for an example of an order chromatic number 2 semi-caterpillar whose
underlying graph is not a caterpillar. The fact that basic caterpillars have linear extremal
functions follows easily from the following two observations about a concept we call basic
extension: A basic extension of a non-trivial edge-ordered graph G is an edge-ordered graph
obtained by adding a single new edge to G that connects one end of the smallest edge of
G to a new vertex outside G and making this new edge smaller than any edge in G.
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Figure 1: A semi-caterpillar with a linear extremal function

Lemma 2.2. A non-trivial edge-ordered graph G without isolated vertices is a basic cater-
pillar if and only if G is obtained (up to isomorphism) from the (only) edge-ordering of the
graph K2 by a sequence of basic extensions.

Lemma 2.3. If G′ is a basic extension of the edge-ordered graph G, then ex<(n,G′) =
ex<(n,G) +O(n).

Lemma 2.2 is very easy to prove and Lemma 2.3 was already implicit in [4]. We use a
similar approach for proving the first statement of Theorem 1, but we will have to resolve
several complications on the way. To formulate a version of Lemma 2.2 for semi-caterpillars
of order chromatic number 2 we will introduce a generalization of basic extensions we call
extensions. We deal with edge-ordered trees, so the underlying simple graphs are bipartite.
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We will have to break symmetry and distinguish the two sides. This is largly motivated
by Lemma 2.1.

An edge-ordered bigraph G is an edge-ordered graph G0 together with a proper 2-
coloring to left and right vertices, so each edge has a left end and a right end. We call
G0 the edge-ordered graph underlying G. Note that we use many terms, like edge-ordered
forest, edge-ordered tree, edge-ordered path in a simpler sense meaning an edge-ordered
graph whose underlying simple graph is a forest, a tree, or a path, respectively. Our use
of edge-ordered bigraph as explained above is more than an edge-ordered graph whose
underlying simple graph is bipartite. The notions of isomorphism, subgraph, contain and
avoid naturally extend to edge-ordered bigraphs.

The paper [4] introduced edge-ordered bigraphs in order to break symmetry. Using
them one can distinguish the two ways a connected edge-ordered graph may be embedded
in another edge-ordered graph if both underlying simple graphs happen to be bipartite:
after making them into edge-ordered bigraphs by designating left and right vertices in both
graphs either all left vertices map to left vertices and the mapping ensures containment
between the edge-ordered bigraphs or all left vertices map to right vertices in which case
it does not.1

Let G be a non-trivial edge-ordered bigraph and let e be the smallest edge in G. We
call the edge-ordered bigraph G′ an extension of G if G′ is obtained from G by adding new
edges to it, such that

1. every new edge connects one end of e to a new degree 1 vertex;
2. all new edges are smaller than the edge e;
3. all new edges incident to the left end of e are smaller than any new edge incident to

the right end of e.

Let T0 denote the unique edge-ordered bigraph with a single edge and two vertices. We are
now ready to formulate our analogue of Lemma 2.2 for semi-caterpillars of order chromatic
number 2.

Lemma 2.4. An edge-ordered graph is a semi-caterpillar of order chromatic number 2 if
and only if it is isomorphic to the underlying edge-ordered graph of an edge-ordered bigraph
obtained by a sequence of extensions from T0.

The proof of this lemma uses among other things the characterization in Lemma 2.1.
If we could complement Lemma 2.4 with an appropriate analogue of Lemma 2.3, that
would finish the proof of the first statement of Theorem 1. This analogue should state
that if G′ is an extension of the edge-ordered bigraph G and their underlying edge-ordered
graphs are G′

0 and G0, respectively, then ex<(n,G′
0)−ex<(n,G0) = O(n) or—at least—that

ex<(n,G′
0) is linear if ex<(n,G0) is linear. Unfortunately, neither statement holds.

This makes our proof of the first statement of Theorem 1 necessarily more involved:
instead of being able to concentrate on a single extension step, we have to argue about the
entire sequence of extensions that produces a certain edge-ordered bigraph.

1The paper [4] used the terms edge-ordered bipartite graph instead of edge-ordered bigraph and the
terms left-contain and right-contain for the two ways an edge-ordered bigraph can contain a path.
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And now we say a few words on the proof of the second statement of Theorem 1 which
states that the extremal functions of connected edge-ordered graphs not covered by the
first statement are Ω(n log n). Its main ingredient is the following lemma. We denote the
simple path on k vertices by Pk and denote its labeling by listing the labels along the path
in the upper index. For example, P 213

4 mentioned in the lemma below is the edge-ordered
3-edge path whose middle edge is the smallest.

Lemma 2.5. Let G be a non-trivial edge-ordered tree. G is a semi-caterpillar if and only
if it does not contain any of the edge-ordered paths P 213

4 , P 1342
5 or P 1432

5 .

Using this lemma one can finish the proof of the second statement of Theorem 1 as
follows. If the order chromatic number of G is not 2, then by the edge-ordered version of the
Erdős-Stone-Simonovits theorem (see [4]) ex<(n,G) = Θ(n2). Recall that G is assumed to
be connected, so if it is not an edge-ordered tree, then its underlying simple graph contains
a cycle Ck and therefore ex<(n,G) ≥ ex(n,Ck) = Ω(n1+1/k). If G is a non-trivial edge-
ordered tree, but not a semi-caterpillar, then it contains one of the three edge-ordered paths
listed in Lemma 2.5 and therefore the extremal function ex<(n,G) is at least the extremal
function of the corresponding edge-ordered path. The extremal functions of these edge-
ordered paths were studied in the paper [4] and we know that ex<(n, P 1432

5 ) = Θ(n log n)
and ex<(n, P 1342

5 ) = Ω(n log n), so we are done in these cases. In the only remaining case
G contains P 213

4 .
The paper [4] calculates the extremal function of P 213

4 also, but unfortunately it is linear.
Now we apply the same argument to the reverse GR of G, which is also connected. We
obtain that if GR is not a semi-caterpillar of order chromatic number 2, then its extremal
function is Ω(n log n) or else it contains P 213

4 . Note that the extremal function of G and
GR coincide, so we are done unless both edge-ordered graphs G and GR contain P 213

4 or,
in other words, G contains both P 213

4 and P 132
4 .

There are edge-ordered graphs with linear extremal functions containing both P 213
4 and

P 132
4 , for example the disjoint union of P 213

4 and P 465
4 . But recall that G is connected.

We finish the proof by showing that the extremal function of any connected edge-ordered
graph G containing both P 213

4 and P 132
4 is Ω(n log n). The proof uses the construction in

Lemma 4.11 of [4].

3 Concluding remarks
Studying the extremal functions of edge-ordered graphs, especially those at the lower

end of the spectrum seems very interesting. In particular, Gerbner, Methuku, Nagy, Pálvöl-
gyi, Tardos and Vizer in [4] studied the extremal functions of many edge-ordered graphs,
among them all edge-ordered paths consisting of up to four edges. In the journal version
of this paper we extend their research to paths of five edges and beyond. Unfortunately,
we do not have enough space to include the highlights of this line of research here.
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