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A polynomial removal lemma for posets
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Abstract

We prove a removal lemma with polynomial bound for posets. Alon and Shapira
proved that every class of undirected graphs closed under the removal of edges and
vertices is strongly testable. However, their bounds on the queries are not very ef-
fective, since they heavily rely on Szemerédi’s regularity lemma. The case of posets
turns out to be simpler: we show that every class of posets closed under the removal
of edges is easily testable, that is, strongly testable with a polynomial bound on the
queries. We also give a simple classification: for every class of posets closed under
the removal of edges and vertices there is an h such that the class is indistinguishable
from the class of posets without chains of length h (by testing with a constant number
of queries). The analogous results hold for comparability graphs.
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1 Introduction
The relationship between local and global properties of structures is a central theme in
combinatorics and computer science. A classical result of this kind is the triangle removal
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lemma by Ruzsa and Szemerédi [21] usually stated in the form that if a graph G admits
δ|V (G)|3 triangles then it can be made triangle-free by the removal of ε|V (G)|2 edges, where
δ depends only on ε. This can be applied to give a combinatorial proof of Roth’s theorem
[19] on 3-term arithmetic progressions, while the hypergraph removal lemma has been used
to prove Szemerédi’s theorem. Removal lemmas were proved for abelian groups by Green
[13], for linear systems of equations by Král, Serra and Vena [16] and for permutations by
Klimošová and Král [15], and by Fox and Wei [10], as well. These have led to applications
in computer science allowing to test many properties by sampling a constant number of
element from a structure [20].

We say that a property of (di)graphs is a set of finite (di)graphs. A (di)graph G is ε-far
from having a property Φ if any (di)graph G′ on the vertex set V (G) that differs by at
most ε|V (G)|2 edges from G does not have the property Φ either. A property Φ is strongly
testable if for every ε > 0 there exists an f(ε) such that if G is ε-far from having the
property Φ then for a (di)graph G the induced (directed) subgraph on f(ε) vertices chosen
uniformly at random does not have the property Φ with probability at least one half. Alon
and Shapira [3] proved that every property of undirected graphs closed under the removal
of edges and vertices is strongly testable, see Lovász and Szegedy for an analytic approach
[17], while Rödl and Schacht generalized this to hypergraphs [18], see also Austin and Tao
[7].

Unfortunately, the dependence on ε can be quite bad already in the case of undirected
graphs: the known upper bounds in the Alon-Shapira theorem are wowzer functions due
to the iterated involvement of Szemerédi’s regularity lemma. We call a property easily
testable if f(ε) can be bounded by a polynomial of ε. Even triangle-free graphs are hard
to test, i.e., this class is not easily testable: Behrend’s construction [8] on sets of integers
without 3-term arithmetic progression leads to a lower bound of magnitude εc log(ε). Alon
proved that H-freeness is easily testable in case of undirected graphs if and only if H is
bipartite. For forbidden induced subgraphs Alon and Shapira gave a characterization [4],
where there are very few easy cases, and ordered graphs studied by Gishboliner and Tomon
are similar [11]. On the other hand, 3-colorability and, in general, "partition problems"
surprisingly turned out to be easily testable, see Goldreich, Goldwasser and Ron [12]. Even
a conjecture to draw the borderline between easy and hard properties seems beyond reach.

The goal of this paper is to study testability of posets as special digraphs. By a poset we
mean a set equipped with a partial order that is anti-reflexive, asymmetric and transitive.

One can show that every property of posets closed under the removal of edges and
vertices is strongly testable, similarly to the proof of Alon and Shapira [3], using the poset
version of Szemerédi’s regularity lemma proved by Hladky, Máthé, Patel and Pikhurko
[14]). We show that properties of posets defined by forbidden subposets are easily testable.
This is equivalent to the following removal lemma with polynomial bound. The height of
a finite poset P is defined as the length of its longest chain, while the width is the size of
the largest antichain, denoted by h(P ) and w(P ), respectively. The chain of length h is
denoted by Ch.

Given two finite posets P,Q a mapping f : Q → P is a homomorphism if it is order-
preserving, i.e., f(x) ≺ f(y) for every x ≺ y. The probability that a uniform random
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mapping from Q to P is a homomorphism is denoted by t(Q,P ).

Theorem 1.1. For every ε > 0 and positive integers h,w there exists δ > 0 such that for
every finite poset Q of height h and width w and an arbitrary finite poset P , if t(Q,P ) < δ
then there exists a Q-free poset P ′ on the base set of P obtained by deleting at most ε|P |2
edges of P . Moreover, P ′ is Ch-free and the dependence of δ on ε is polynomial.

We use this theorem to prove testability for (not necessarily finite) classes of finite
posets. The height and width of P of a set of finite posets are

h(P) = min
P∈P

h(P ) w(P) = min
P∈P:

h(P )=h(P)

w(P ).

Theorem 1.2. For every family of finite posets P the property of not containing any
member of P as a subposet is easily testable. Moreover, the number of queries depends
only on h(P) and w(P).

We say that two properties Φ1 and Φ2 of posets are not distinguishable if for every
ε > 0 and i = 1, 2 there exists N such that for every poset P on at least N elements with
property Φi there exists a poset P ′ with property Φ3−i such that P ′ is obtained by deleting
at most ε|P |2 edges of P .

Theorem 1.3. For every family of finite posets P there exists an h such that the property
of not containing any member of P as a subposet is not distinguishable from the property
of not containing the chain Ch as a subposet.

Note that in our case it is meaningless to allow adding edges to the original poset, since
adding edges will not change whether the poset is P-free.

The comparability graph G corresponding to a poset P has vertex set V (G) = P and
edge set E(G) = {(x, y) : x ≺ y or y ≺ x}. Alon and Fox proved that it is hard to test if
a given graph is a comparability graph (or if it is perfect) [6]. Besides posets our results
apply to comparability graphs, too. Given a set of (possibly infinitely many) finite graphs
F we define the chromatic number χ(F) and the independence number α(F) as follows.

χ(F) = min
F∈F

χ(P ) α(F) = min
F∈F :

χ(F )=χ(F)

α(F ).

Theorem 1.4. For every family of finite graphs F the property of a given comparability
graph not containing any member of F as a subgraph is easily testable. Moreover, the
number of queries depends only on χ(F) and α(F).

Theorem 1.5. For every family of finite graphs F the property of being a comparability
graph and not containing any member of F as a subgraph is not distinguishable from the
property of being a comparability graph and having chromatic number at most χ(F)− 1.

The proofs are based on the same ideas as in case of posets, we do not include them.
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2 Density bounds
The complete h-partite poset with antichains of size w will be denoted byKh×w(= Kw,w,...,w).
In particular, Kh×1 is a chain of length h, but for this we will use the shorthand notation
Ch.

The next lemma provides a lower bound on the density of the complete h-partite poset
Kh×w in terms of the density of the chain of length h. The proof uses standard techniques
appearing in the solution to the Zarankiewicz problem. We will use the notation [n] :=
{1, 2, . . . , n}.

Lemma 2.1. For every poset P and positive integers h,w the inequality

t(Kh×w, P ) ≥ tw
2

(Ch, P )

holds.

Proof. The following two claims imply the lemma.
Claim 2.2.

t(Kh×w, P ) ≥ tw(Kw,1,w,1,..., P )

Proof. Let (xi,j)i∈[h],j∈[w] be chosen uniformly and independently at random.

t(Kh×w, P ) = P(xi,j)i∈[h],j∈[w]

(
∀i′ ∈ [h− 1], j, j′ ∈ [w] xi′,j ≺ xi′+1,j′

)
= E(xi,j)i∈[h],j∈[w]

i odd

[
P(xi,j)i∈[h],j∈[w]

i even

(
∀i′ ∈ [h− 1], j, j′ ∈ [w] xi′,j ≺ xi′+1,j′

∣∣∣ (xi,j)i∈[h],j∈[w] , i odd )] .
Here we split Kh×w into w edge-disjoint copies of Kw,1,w,1,.... Since the events corresponding
to elements in the same even layer are independent we obtain that this equals

E(xi,j)i∈[h],j∈[w]

i odd

[
Pw(xi,1)i∈[h]

i even

(
∀i′ ∈ [h− 1], j′ ∈ [w]

if i′ odd then xi′,j′≺xi′+1,1

if i′ even then xi′,1≺xi′+1,j′

∣∣∣ (xi,j)i∈[h],j∈[w] , i odd
)]

≥ Ew(xi,j)i∈[h],j∈[w]

i odd

[
P(xi,1)i∈[h]

i even

(
∀i′ ∈ [h− 1], j′ ∈ [w]

if i′ odd then xi′,j′≺xi′+1,1

if i′ even then xi′,1≺xi′+1,j′

∣∣∣ (xi,j)i∈[h],j∈[w] , i odd
)]

= Pw (xi,1)i∈[h] for i even
(xi,j)i∈[h],j∈[w] for i odd

(
∀i′ ∈ [h− 1], j′ ∈ [w]

if i′ odd then xi′,j′≺xi′+1,1

if i′ even then xi′,1≺xi′+1,j′

)
= tw(Kw,1,w,1,..., P ),

where we have applied Jensen’s inequality.

Claim 2.3.
t(Kw,1,w,1,..., P ) ≥ tw(Ch, P )

The proof of this Claim follows the same lines as the previous one, we do not include
it. The lemma follows.
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3 Removal lemmas with polynomial bounds
First we prove a removal lemma for chains.

Lemma 3.1. For every ε > 0 and positive integer h there exists a δ > 0 such that for
every finite poset P if t(Ch, P ) < δ then there exists a Ch-free poset P ′ on the base set of
P obtained by deleting at most ε|P |2 edges of P . Moreover, the dependence of δ on ε is
polynomial: δ =

⌈
3
ε

⌉−h.
Remark 3.2. For a fixed h the dependence of δ on ε is similar to that in the lemma. Consider
a random h-partite poset with classes S1, . . . , Sh of equal size large enough, where for two
element x ∈ Si, y ∈ Si+1 with probability h2ε < 1 we have x ≺ y. The expected value
of t(Ch, P ) is εh−1hh−2. On the other hand, it is not hard to see that we need to remove
essentially ε|P |2 edges to make the poset Ch-free. (This is the expected number of edges
between two consecutive classes.)

Proof. (of Lemma 3.1) Set γ =
⌈
3
ε

⌉−1. We partition the poset P into classes S1, . . . S1/γ of
size differing by at most one such that if x ≺ y holds for x ∈ Si and y ∈ Sj then i ≤ j.
This is possible, since every finite poset has a linear extension.

Now we will delete edges in order to get a Ch -free poset.
First, delete edges inside the classes – this way we delete at most γ|P |2 edges. The

remaining digraph is still a poset, denote it by P1.
We define a function r : P1 → [1/γ]. Given an element x ∈ Si the integer r(x) will be

the largest integer such that x is the maximal element of "many" chains with length r(x).
Set r(x) = 1 for every x ∈ S1.
Assume that for i < 1/γ the function r is defined on ∪ij=1Sj.
Given x ∈ Si+1 let r(x) be the largest integer such that

∣∣{y : y ≺ x in P1, r(y) =
r(x)− 1}

∣∣ ≥ γ|P |, and 1 if there is no such integer. Note that r(x) ≤ r(y) holds for every
x ≺ y. There are at least (γ|P |)r(x)−1 chains of length r(x) ending at x for every x ∈ Si+1

such that r is strictly increasing on these chains.

Once the function r is defined we delete every edge (x, y) in P1 for y ≺ x if r(x) = r(y).
This concerns at most γ|P |2 edges, otherwise r(x) would be larger. Note that the remaining
digraph P2 is still a poset and for every x there are still at least (γ|P |)r(x)−1 chains of length
r(x) ending at x such that r is strictly increasing on these chains.

There is no element, where r takes value (h + 1), since every such element would be
the end of at least (γ|P |)h chains of length at least (h+ 1), but we do not have that many
different chains of length h. By the same reason the number of elements, where r takes
value h, is at most γ|P |. We delete every edge adjacent to these elements: this way we
delete at most γ|P |2 edges, denote the remaining poset by P ′.

The total number of edges deleted is at most 3γ|P |2 < ε|P |2.
The poset P ′ does not contain any chain of length at least h, since edges where the

value of r at the end-vertex is at least h has been deleted, while edges where the value of



A polynomial removal lemma for posets 700

r at the end-vertex is not greater than at the starting vertex have also been deleted. This
finishes the proof of the lemma.

Proof. (of Theorem 1.1) Set δ = d3
ε
e−hw2 . The poset Q is a subposet of Kh×w, hence

Lemma 2.1 implies δ > t(Q,P ) ≥ t(Kh×w, P ) ≥ tw
2
(Ch, P ). By Lemma 3.1 there exists a

Ch-free subposet P ′ of P obtained by deleting at most ε|P |2 edges.

Corollary 3.3. For every ε > 0 and positive integers h,w there exists δ > 0 such that for
every finite graph F of chromatic number h and independence number w and an arbitrary
finite comparability graph G if t(F,G) < δ then there exists an F -free comparability graph
G′ on the vertex set of G obtained by deleting at most ε|V (G)|2 edges of G. Moreover, G′

is Kh-free and the dependence on ε is polynomial: δ =
⌈
3
ε

⌉−hw2

.

Proof. The graph F is a subgraph of the multipartite Turán graph T with h classes each
of size w, hence t(F,G) ≥ t(T,G). Let P be one of the posets whose comparability graph
is G. Note that t(T,G) ≥ t(Kh×w, P ), since we may assume that T is the comparability
graph of Kh×w, hence every homomorphism of Kh×w to P is a comparability-preserving
map from T to G, i.e., a graph homomorphism.

We obtain by Lemma 2.1 that δ > t(F,G) ≥ t(Kh×w, P ) ≥ tw
2
(Ch, P ).

Lemma 3.1 implies that there exists a Ch-free subposet P ′ of P obtained by deleting at
most ε|P |2 edges, and its comparability graph G′ satisfies the conditions of the corollary.

4 Property testing
Proof. (of Theorem 1.2) Set h = h(P) and w = w(P). Consider an ε > 0 and a poset
P such that after removing ε|P |2 the resulting poset still contains a subposet in P . By
Corollary 3.3 the probability that hw elements chosen uniformly at random contain Kh×w,
and hence a poset in P as a subposet is at least

⌈
3
ε

⌉−hw2

. If we choose hw
⌈
3
ε

⌉hw2

elements
uniformly at random then the probability of finding a poset in P as subposet is more than
a half.

Proof. (of Theorem 1.3) If a poset does not contain the chain Ch(P) as a subposet then it
does not contain any poset from P .

In order to prove the other direction consider a poset Q ∈ P with height h(P). If
a poset P does not contain Q as a subposet then there is no injective homomorphism
from Q to P , hence t(Q,P ) ≤ |P |−1|Q|2. Theorem 1.1 shows that by the removal of
3|P |−1/(h(Q)w(Q)2)|Q|1/(2h(Q)w(Q)2)|P |2 edges from P one obtains a Ch(P)-free poset.

References
[1] Alon, Noga and Fischer, Eldar and Krivelevich, Michael and Szegedy, Mario (2000). Efficient testing

of large graphs. Combinatorica, 20(4), 451-476.



A polynomial removal lemma for posets 701

[2] Alon, Noga and Shapira, Asaf (2003). Testing subgraphs in directed graphs. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing (pp. 700-709).

[3] Alon, Noga and Shapira, Asaf (2005). Every monotone graph property is testable. In Proceedings of
the thirty-seventh annual ACM symposium on Theory of computing (pp. 128-137).

[4] Alon, Noga and Shapira, Asaf (2006). A characterization of easily testable induced subgraphs. Com-
binatorics, Probability and Computing, 15(6), 791-805.

[5] Alon, Noga and Fox, Jacob (2011). Testing perfection is hard. arXiv preprint arXiv:1110.2828.

[6] Alon, Noga and Fox, Jacob (2015). Easily testable graph properties. Combinatorics, Probability and
Computing, 24(4), 646-657.

[7] Austin, Tim and Tao, Terence (2010). Testability and repair of hereditary hypergraph properties.
Random Structures & Algorithms, 36(4), 373-463.

[8] Behrend, Felix A (1946). On sets of integers which contain no three terms in arithmetical progression.
Proceedings of the National Academy of Sciences, 32(12), 331-332.

[9] Fox, Jacob (2011). A new proof of the graph removal lemma. Annals of Mathematics, 561-579.

[10] Fox, Jacob and Wei, Fan (2018). Fast property testing and metrics for permutations. Combinatorics,
Probability and Computing, 27(4), 539-579.

[11] Gishboliner, Lior and Tomon, István (2021). Polynomial removal lemmas for ordered graphs. arXiv
preprint arXiv:2110.03577.

[12] Goldreich, Oded and Goldwasser, Shari and Ron, Dana (1998). Property testing and its connection
to learning and approximation. Journal of the ACM (JACM), 45(4), 653-750.

[13] Green, Ben (2005). A Szemerédi-type regularity lemma in abelian groups, with applications. Geometric
& Functional Analysis GAFA, 15(2), 340-376.
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