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Abstract

There are three essentially necessary conditions for perfect tilings in hypergraphs,
which correspond to barriers in space, divisibility and covering. It is natural to ask
when these conditions are asymptotically sufficient. Our main result confirms this
for hypergraph families that are approximately closed under taking a typical induced
subgraph of constant order. As an application, we recover and extend a series of
well-known results for perfect tilings in hypergraphs and related settings involving
vertex orderings and rainbow structures.
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1 Introduction
A basic question in combinatorics is whether a combinatorial object on a ground set of
vertices contains a particular substructure that spans all vertices. Since the corresponding
decision problems are typically computationally intractable, the ‘extremal’ approach has
focused on identifying easily verifiable sufficient conditions, a classic example being mini-
mum degree conditions in the graph setting. Over the past decades, a robust literature has
developed around these problems [9, 13, 21, 22], yet many questions remain widely open.

More recently, efforts have increasingly been dedicated to formulating an axiomatic
approach. The idea is to identify a set of ‘simple’ conditions that are essentially neces-
sary for the existence of the desired substructure. One then aims to show that satisfying
these properties in a robust manner guarantees the substructure in question. Important

∗Fachbereich Mathematik, Universität Hamburg, 20146 Hamburg, Germany. E-mail:
richard.lang@uni-hamburg.de. This research was supported by DFG (450397222), FAPESP (21/11020-
9) and H2020-MSCA (101018431).

702



Tiling Dense Hypergraphs 703

milestones in this line of research are due to Keevash and Mycroft [10], Han [5] (perfect
matchings) and Keevash [8] (designs) in the hypergraph setting. For graphs, analogous
results have been obtained by Kühn, Osthus and Treglown [15] (Hamilton cycles), Knox
and Treglown [11], Lang and Sanhueza-Matamala [16] (easily separable graphs) as well as
Hurley, Joos and Lang [7] (perfect mixed tilings).

We continue this branch of research by introducing a framework for perfect tilings in
hypergraphs. The literature on this subject has identified three natural barriers that pre-
vent perfect tilings, which correspond to obstructions in space, divisibility and covering.
Freschi and Treglown [4] raised the ‘meta question’ whether this already includes all rel-
evant obstacles. We answer this in the affirmative for hypergraphs families (and related
structures) whose features are approximately replicated by a typical subgraph of constant
order. Our main contribution states that any hypergraph which robustly overcomes each
of the obstructions must already contain a perfect tiling.

As an application, we recover and extend the milestones for perfect tilings under mini-
mum degree conditions in graphs [12, 14] and hypergraphs [6, 19] as well as recent break-
throughs in the ordered setting [4], quasirandom setting [2] and the rainbow setting [1, 18].

2 A framework for hypergraph tiling
In the following, we formulate a simplified version of our main result. A k-uniform hyper-
graph (or k-graph for short) G consists of vertices V (G) and edges E(G), where each edge
is a set of k vertices. Given another k-graph F , our goal is to find a perfect F -tiling in G,
which is a collection of pairwise disjoint copies of F that together cover all vertices of G.
Note that the special case, when F is a single edge, corresponds to a perfect matching.
We denote by Hom(F ;G) the set of homomorphisms from F to G, meaning the functions
φ : V (F )→ V (G) that map edges of F to edges of G.

Obstacles for perfect tilings

Let us review three essentially necessary conditions for perfect tilings in hypergraphs.

Space. A first obstruction to perfect tilings involves space. For example, a simple in-
stance of the space barrier is obtained by taking a complete graph and deleting the edges
within a subset of more than half of the vertices. We formalise the corresponding space
property via a linear programming relaxation. A perfect fractional F -tiling G is a function
ω : Hom(F ;G)→ [0, 1] such that for all v ∈ V (G), we have

∑
φ∈Hom(F ;G) ω(φ)|φ−1(v)| = 1.

Let SpaF be the set of k-graphs with a perfect fractional F -tiling.

Divisibility. Another type of obstacle for perfect tilings arises from divisibility. For
instance, it is not possible to find a perfect matching in the union of two disjoint odd
cliques — a basic example of the divisibility barrier. We can capture this phenomenon as
follows. For a homomorphism φ ∈ Hom(F ;G), denote by 1φ ∈ NV (G) the indicator vector
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of the image of φ, which satisfies 1φ(v) = |φ−1(v)| for each v ∈ V (G). Similarly, for a
vertex u ∈ V (G), denote by 1u the indicator vector with 1u(u) = 1 and zero otherwise.
The F -lattice of G is the additive subgroup L(F ;G) ⊆ ZV (G) generated by the vectors 1φ
with φ ∈ Hom(F ;G). We say that L(F ;G) is complete if it contains all transferrals 1v−1u
with u, v ∈ V (G). Denote by DivF the set of k-graphs with complete F -lattice.

Cover. There are hypergraphs which satisfy the space and divisibility condition, but do
not contain a perfect tiling simply because some vertices are not on any copy of F at
all. Such a configuration is called a cover barrier. Motivated by this, we say that G is
F -covered if for every vertex v ∈ V (G), there is a homomorphism φ ∈ Hom(F ;G) such
that |φ−1(v)| = 1. We denote by CovF the set of F -covered k-graphs.

Necessity. The next claim confirms that the space, divisibility and cover properties are
essentially necessary for the existence of a perfect tiling. We abbreviate m = |V (F )|.

Observation 2.1. If G has more than m vertices and contains a perfect F -tiling after
deleting any choice of m vertices. Then G satisfies SpaF , DivF and CovF .

Proof. The cover property follows trivially. The space property can be obtained by aver-
aging over all fractional perfect F -tilings obtained after deleting m vertices. For the com-
pleteness of the lattice L(F ;G), let G′ ⊆ G be obtained by deletingm−1 arbitrary vertices,
and let u, v ∈ V (G′). By assumption, G′−u has a perfect F -tiling Fu, and G′−v has a per-
fect F -tiling Fv. We identify these tilings with the corresponding elements of Hom(F ;G).
It follows that L(F ;G) contains the transferral 1v − 1u =

∑
φ∈Fv

1φ −
∑

φ∈Fu
1φ, as de-

sired.

Sufficient conditions for perfect matchings. Now we are ready to formulate our main
result, which inverts the implication of Observation 2.1. It states that every hypergraph
which robustly overcomes the space, divisibility and cover barrier has a perfect tiling. Our
notion of robustness is formalised with the following key definition.

Definition 2.2 (Property graph). For a k-graph G and property P , the property graph,
denoted by P (s)(G;P), is the s-uniform hypergraph on vertex set V (G) with an edge
S ⊆ V (G) whenever the induced subgraph G[S] satisfies P .

Informally, we regard G as ‘robustly’ satisfying P if P (s)(G;P ′) has minimum degree
vertex 1 − exp(−Ω(s)) where P ≈ P ′. However, in practise a lower degree condition
suffices due the possibility of ‘boosting’. Let δ(s) be the minimum vertex degree threshold
for perfect s-uniform matchings, that is the least δ ∈ [0, 1] such that for all µ > 0 and
n large enough and divisible by s, every n-vertex s-graph P with δ1(P ) ≥ (δ + µ)

(
n−1
s−1

)
admits a perfect matching.

Theorem 2.3. For every k-graph F on m vertices, s ≥ 1 and µ > 0 there is n0 such that
for all n ≥ n0 divisible by m the following holds. Let G be a k-graph on n vertices with

δ1
(
P (s)(G; SpaF ∩DivF ∩CovF )

)
≥ (δ(s) + µ)

(
n−1
s−1

)
.
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Then G has a perfect F -tiling.

Keevash and Mycroft [10] as well as Han [5] investigated similar phenomena in the
setting of perfect matchings. These results differ in their notion of robustness and in their
proof techniques. In particular, Keevash and Mycroft [10] introduced the concept of com-
pleteness for lattices and used it to find a suitable allocation for the Hypergraph Blow-up
Lemma. Independently, Lo and Markström [17] developed an absorption-based approach
to hypergraph tiling using a (more restrictive) form of lattice completeness. Han [5] com-
bined and extended these ideas to give a simpler proof of the Keevash–Mycroft Theorem
avoiding the (Strong) Hypergraph Regularity Lemma.

Our main framework contributes to this line of research in two ways. Firstly, the inter-
face is simple but practical. For host graph families that are approximately closed under
taking typical induced subgraphs of constant order, Theorem 2.3 practically decomposes
the problem of finding perfect tilings into verifying the space, divisibility and cover prop-
erties separately, which greatly simplifies the analysis. The fact that the building blocks
of these properties are formulated in terms of homomorphisms adds a lot of flexility to
this approach. A more general result, which also applies to structures beyond hypergraphs
is proved in the full version of the paper. In combination, we obtain short and insightful
proofs of many old and new results.

The second important point about Theorem 2.3 is that the proof itself is quite short.
The argument is self-contained, after discounting classic insights from combinatorics, and
it does not involve the Regularity Lemma. The techniques can easily be extended to
other configurations involving exceptional vertices and the partite setting. Finally, our
framework can also be used to derive stability results via the theory of property testing.

Proof outline. Let us sketch the proof of Theorem 2.3. Consider a k-graph G which
robustly satisfies P := SpaF ∩DivF ∩CovF . Our goal is to find a perfect F -tiling in G. For
perfect matchings, this has been done by considering a partition V of V (G) together with
a reduced k-graph Γ on the clusters of V , whose edges track the local edge densities of G.
Under the right notion of robustness, this implies that Γ also satisfies P . This framework
allows to find a perfect matching in G either via a Hypergraph Blow-up Lemma [10] or
via an absorption argument plus some classic insights on matchings in sparse graphs [5].
The main idea of our proof is to replace the reduced graph Γ ∈ P , which approximates the
whole structure of G, with a family of reduced k-graphs R ⊆ P , that describe parts of the
local structure of G with higher accuracy.

To illustrate this, let us outline why G contains for some k-graph R ∈ P the blow-
up R∗.1 Recall that by assumption the property s-graph P := P (s)(G;P) is quite dense.
Thus, by an old result of Erdős [3], we may find a complete s-partite s-graph K ⊆ P with
parts of size b where b is much larger than s. Note that each edge S ∈ E(K) corresponds
to an element G[S] of P , but for distinct edges these elements might differ or not have
their vertices in the same parts of K. To deal with this, we give a colour to each of these

1Meaning that R∗ is obtained by replacing each vertex of R by constant number of vertices and replacing
the edges with complete partite subgraphs.
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configurations and apply Ramsey’s theorem. This results in a subgraph R∗ ⊆ K with
(somewhat smaller) parts of size b′ and an s-vertex k-graph R ∈ P such that every edge
S ∈ E(R∗) induces an k-graph isomorphic to R with its vertices in the ‘same’ parts; just
as desired. We informally call R∗ a ‘P-blow-up’ with ‘local reduced graph’ R.

Given this observation, the proof of Theorem 2.3 proceeds in two steps implementing
the Absorption Method [20]. First we match most of the vertices, then we incorporate the
leftover vertices. For the first step, we show that under the assumption that the property
graph has large minimum vertex degree one can partition most of the vertices of G with
P-blow-ups. We then find an almost perfect tiling in each of these blow-ups. For the
second step, we show that every set of m vertices is anchored in many P-blow-ups. This
allows us to reserve a small set of P-blow-ups beforehand to host a special structure, which
can be used to absorb the leftover vertices.

The remaining challenge of the proof then consists in spelling out the embedding ar-
guments into the blow-ups. This step is equivalent to an allocation in the context of a
Blow-up Lemma applied to a ‘global reduced graph’ Γ. However, in our context we allo-
cate to local reduced graph R. Since its blow-up R∗ is complete partite this immediately
results in the desired embedding. So in particular, we may avoid the technical details of
using a (Hypergraph) Blow-up Lemma.
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