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Abstract

Magnant and Martin [24] conjectured that every d-regular graph on n vertices
can be covered by n/(d + 1) vertex-disjoint paths. Gruslys and Letzter [11] verified
this conjecture in the dense case, even for cycles rather than paths. We prove the
analogous result for directed graphs and oriented graphs, that is, for all α > 0, there
exists n0 = n0(α) such that every d-regular digraph on n vertices with d ≥ αn can
be covered by at most n/(d+ 1) vertex-disjoint cycles. Moreover if G is an oriented
graph, then n/(2d + 1) cycles suffice. This also establishes Jackson’s long standing
conjecture [14] for large n that every d-regular oriented graph on n vertices with
n ≤ 4d+ 1 is Hamiltonian.
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1 Introduction
As one of the most intensely studied structures in the graph theory, a Hamilton cycle
in a (directed) graph is a (directed) cycle that visits every vertex. There are numerous
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results that establish (best-possible) conditions guaranteeing the existence of Hamilton
cycles in (directed) graphs. The seminal result of Dirac [5] states that every graph on
n ≥ 3 vertices with minimum degree at least n/2 is Hamiltonian. Ghouila-Houri [10]
showed the corresponding version in directed graphs (digraph for short), that is, every
digraph on n ≥ 3 vertices with minimum semidegree at least n/2 (i.e. every vertex has
in- and outdegree at least n/2) is Hamiltonian. These bounds are tight by taking e.g. the
disjoint union of two cliques (a regular extremal example) or a slightly imbalanced complete
bipartite graph (an irregular extremal example). Recall that an oriented graph is a digraph
that can have at most one edge between each pair of vertices (whereas a digraph can have
up to two, one in each direction). For oriented graphs, a more recent result of Keevash,
Kühn and Osthus [15] establishes a (tight) minimum degree threshold of d(3n− 4)/8e for
Hamiltonicity. In contrast to graphs and digraphs, there are no regular extremal examples
in the case of oriented graphs. Jackson [14] conjectured in 1981 that regularity actually
reduces the degree threshold significantly for oriented graphs:

Conjecture 1.1 (Jackson [14]). For each d > 2, every d-regular oriented graph on n ≤
4d+ 1 vertices has a Hamilton cycle.

The disjoint union of two regular tournaments shows that Jackson’s conjecture is best
possible.1 We note that the approximate version of Jackson’s conjecture was recently
verified by current authors in [23], that is for every ε > 0, there exists n0(ε) such that
every d-regular oriented graph on n ≥ n0(ε) vertices with d ≥ (1/4 + ε)n is Hamiltonian.
Here, we verify the exact version for large n.

Theorem 1.2. There exists an integer n0 such that every d-regular oriented graph on
n ≥ n0 vertices with n ≤ 4d+ 1 has a Hamilton cycle.

Generalizing questions about Hamilton cycles, one can consider the question of covering
the vertices of a (di)graph by as few vertex-disjoint cycles as possible. Indeed, we prove
Theorem 1.2 by showing a more general result about covering regular digraphs and oriented
graphs with few vertex-disjoint cycles.

Theorem 1.3. For all α > 0, there exists n0 = n0(α) such that every d-regular digraph G
on n vertices with d ≥ αn can be covered by at most n/(d + 1) vertex-disjoint cycles.
Moreover if G is an oriented graph, then n/(2d+ 1) cycles suffice.

This is best possible by considering the disjoint union of complete digraphs of order d+1
for digraphs and the disjoint union of regular tournaments of order 2d + 1 for oriented
graphs. Notice that we have n/(2d+1) < 2 when n ≤ 4d+1, so that Theorem 1.3 implies
Theorem 1.2. We also note that Theorem 1.3 generalizes the following result of Gruslys
and Letzter [11] from regular graphs to regular digraphs and oriented graphs.

Theorem 1.4 (Gruslys and Letzter [11]). For all α > 0, there exists n0 = n0(α) such that
every d-regular graph G on n ≥ n0 vertices with d ≥ αn can be covered by at most n/(d+1)
vertex-disjoint cycles.

1This example works for n ≡ 2 (mod 4). Similar examples can also be constructed when n 6≡ 2 (mod 4).
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Theorem 1.3 implies Theorem 1.4 by making every edge into a directed 2-cycle. Theo-
rem 1.3 also has connections with several well-studied problems in extremal graph theory:
here we mention some of them.

1.1 Path Cover

A weaker version of cycle cover is path cover. The path cover number π(G) of a (di)graph G
is the minimum number of vertex-disjoint (directed) paths needed to cover V (G). This was
introduced by Ore [25], and he showed that π(G) ≤ n− σ2(G) holds where σ2(G) denotes
the minimum sum of the degrees over all non-adjacent vertices. Magnant and Martin [24]
conjectured that regularity significantly reduces the upper bound for π(G):

Conjecture 1.5 (Magnant and Martin [24]). If G is a d-regular graph on n vertices, then
π(G) ≤ n/(d+ 1).

It is known that Conjecture 1.5 holds for small values of d (see [24] for d ≤ 5 and see [7]
for d = 6). Han [13] showed that, for dense graphs, it is enough to use 1+ n/(d+1) paths
to cover almost all vertices. Also, Theorem 1.4 verifies Conjecture 1.5 in the dense case.
It is worth noting that the Linear Arboricity Conjecture [2] implies Conjecture 1.5 for odd
values of d, and gives π(G) ≤ 2n/(d+ 2) for general d (see [7] for a detailed discussion).

For digraphs, the classical result of Gallai and Milgram [9] states that π(G) can be
bounded above by the size of maximum independent set (and Dilworth’s [4] theorem says
that the equality holds for the special case of posets). As our Theorem 1.3 generalizes
Theorem 1.4 from graphs digraphs and oriented graphs, we believe the following stronger
version of Conjecture 1.5 holds, which Theorem 1.3 establishes in the dense case.

Conjecture 1.6. If G is a d-regular digraph on n vertices, then π(G) ≤ n/(d+1). More-
over, π(G) ≤ n/(2d+ 1) holds if G is oriented.

Conjecture 1.6 implies Conjecture 1.5 by making every edge into a directed 2-cycle.

1.2 Edge-Disjoint Cycles

In a weaker version of the problem we consider, one is interested in finding edge-disjoint
cycles whose union covers all the vertices. As a generalization of Dirac’s theorem, it is
conjectured [6] that if a graph G on n vertices has minimum degree n/k, then V (G) can be
covered by k−1 edge-disjoint cycles. The case k = 3 was also proved in [6]. The conjecture
was proved for 2-connected graphs [16], and has been completely resolved in [17]. Later,
Balogh, Mousset and Skokan [3] obtained a stability result, showing that every graph on n
vertices with minimum degree nearly n/k has a special structure if it does not have k − 1
edge-disjoint cycles covering all vertices. One can ask the same question for digraphs as
a generalization of Ghoulia-Houri’s theorem, and Theorem 1.3 answers it affirmatively for
regular graphs:

Conjecture 1.7. If G is a digraph with minimum semi-degree n/k, then V (G) can be
covered by k − 1 edge-disjoint cycles.



Cycle Partition of Dense Regular Digraphs and Oriented Graphs 720

1.3 Extending Perfect Matchings

Gruslys and Letzter [11], as well as proving Theorem 1.4, proved that every large d-regular
bipartite graph G on n vertices with d linear in n can be covered by at most n/2d vertex-
disjoint paths. They mentioned that one should be able to replace paths by cycles. Indeed,
as a corollary of Theorem 1.3, the result below shows that those cycles can be found in
such a way that they even contain any prescribed perfect matching.

Corollary 1.8. For all α > 0, there exists n1 = n1(α) such that, for every d-regular
bipartite graph on n ≥ n1 vertices with d ≥ αn, any perfect matching can be extended to a
union of at most n/2d vertex-disjoint cycles.

Note that Corollary 1.8 is tight by considering the disjoint union of n/2d many Kd,d’s.
It also shows that d-regular bipartite graphs on n (sufficiently large) vertices with d > n/4
are examples of graphs in which every perfect matching can be extended into a Hamilton
cycle. This property is called the PMH-property in [1]. Häggkvist [12] initiated the study
of sufficient conditions for the PMH-property (using the name F -Hamiltonian where F is a
perfect matching) by showing σ2(G) ≥ n+1 is sufficient. Las Vergnas [21] proved a similar
condition for bipartite graphs, and Yang [27] gave minimum edge density conditions to
guarantee the PMH property in graphs and bipartite graphs. In the sparse setting, as a
special case of a conjecture of Ruskey and Savage [26], Fink [8] proved that the hypercube
has the PMH-property.

2 Sketch Proof
In this section, we sketch the proof of our main result Theorem 1.3. One of the key
ingredients of the proof is a structural result that allows us to partition dense regular
digraphs into (bipartite) robust expanders, which will be discussed in Section 2.1. In
Section 2.2 we explain how a weaker version of Theorem 1.3 can be quickly derived from
the structural result. In Sections 2.3, we briefly discuss some of the ingredients required
for the full version of Theorem 1.3.

2.1 Robust Expanders

Robust expansion is a notion introduced and used by Kühn and Osthus together with
several coauthors to obtain a number of breakthrough results on (di)graph decompositions
and Hamiltonicity (see [20, 19, 18]). Here we present only the aspects relevant to the sketch
proof and will suppress most parameters to ease exposition.

Informally, robust expanders are dense (di)graphs that are highly connected in some
sense, and one of their key properties is that they are Hamiltonian under suitable (mild)
degree conditions. If we could show that every d-regular digraph can be partitioned into
at most n/(qd + 1) robust expanders where q = 2 if G is oriented and q = 1 otherwise
(we use this definition of q throughout the rest of the sketch proof), it would be enough
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to prove Theorem 1.3. Unfortunately, it is not true, but a similar result can be obtained
by generalizing a structural result of Kühn, Lo, Osthus and Staden [18] about partitioning
undirected graphs into robust expanders.

In order to give the reader some sense of robust (bipartite) expansion, we give the formal
definition below but note that it will not be used in the sketch proof. Also the definition we
give is slightly different but equivalent to that used in other work. Let 0 < ν ≤ τ < 1 and
suppose G is a digraph with subsets of vertices A,B ⊆ V (G) (not necessarily disjoint) and
N := |A| + |B|. We define G[A,B] as the undirected bipartite graph on N vertices with
bipartition A,B where, for each a ∈ A and b ∈ B, ab is an (undirected) edge of G[A,B] if
and only if ab is a directed edge in E(G). We say that G[A,B] is a bipartite robust (ν, τ)-
expander if for every S ⊆ A with τ |A| ≤ |S| ≤ (1− τ)|A|, the set of vertices in B having
at least νN inneighbours in A (in the graph G) has size at least |S| + νN . Henceforth,
we suppress the parameters ν and τ and say simply that G[A,B] is a bipartite robust
expander.

For any d-regular n-vertex digraph G with d linear in n, we show that it is possible
to give two vertex partitions V (G) = V1∗ ∪ · · · ∪ Vk∗ and V (G) = V∗1 ∪ · · · ∪ V∗k with
k ≤ 1 + n/(qd+ 1) such that for each i, G[Vi∗, V∗i] is a bipartite robust expander. Letting
Vij = Vi∗ ∩ V∗j for all i, j ∈ [k], note that we actually give a k2-partition {Vij : i, j ∈ [k]}
of V (G). The following is a simplified informal version of our structural result.

Theorem 2.1. For any α > 0, there exists an integer n0 = n(α) such that for all d-regular
digraph graphs G on n ≥ n0 vertices with d ≥ αn, there is a partition P = {Vij : i, j ∈ [k]}
of V (G) satisfying, for all i ∈ [k],
(i) G[Vi∗, V∗i] is a bipartite robust expander with linear minimum degree;
(ii) |Vi∗| ≈ |V∗i|;
(iii) k ≤ 1 + n/(qd+ 1).

2.2 A Weaker Version of Theorem 1.3

LetG be as in Theorem 1.3, i.e. an n-vertex d-regular digraph with d ≥ αn and n sufficiently
large. In this subsection we describe how Theorem 2.1 can be used to show that almost all
vertices of G can be covered by at most 1 + n/(qd+ 1) vertex-disjoint cycles (so one more
cycle than stated in Theorem 1.3).

We apply Theorem 2.1 and obtain a partition {Vij : i, j ∈ [k]} of V (G) satisfying (i)–
(iii). By (ii), one can delete a small number of vertices in G so that |Vi∗| = |V∗i| holds
for each i ∈ [k] (for notational simplicity, we still write G and Vij after deletion). A key
property of bipartite robust expanders is that deleting any a small number of vertices only
slightly weakens the bipartite robust expansion and minimum degree properties of (i). The
following crucial observation shows that we can partition G into at most k vertex-disjoint
cycles, which establishes the weaker version of Theorem 1.3 since k ≤ 1+n/(qd+1) by (iii).

Fix i ∈ [k], and assume Vij = ∅ for all j ∈ [k] \ {i}, i.e. Vi∗ = Vii = V∗i. In this case,
one can use (i) to show that G[Vii] is a robust expander 2 with linear minimum degree; the

2Roughly speaking, G is a robust expander if G[V (G), V (G)] is a bipartite robust expander.



Cycle Partition of Dense Regular Digraphs and Oriented Graphs 722

result of [20] (see also [22]) then implies that G[Vii] is Hamiltonian. Now, assume Vij 6= ∅
for at least one j ∈ [k] \ {i}. As |Vi∗| = |V∗i|, we have |Vi∗ \ Vii| = |V∗i \ Vii| > 0, so
write Vi∗ \ Vii = {y1, . . . , ys} and V∗i \ Vii = {z1, . . . , zs}. Let φ : Vi∗ → V∗i be given by
φ(x) = x for all x ∈ Vii and φ(yr) = zr for all r ∈ [s]. Define G(i, φ) to be the digraph
whose vertices are Vi∗ and with directed edge uw present in G(i, φ) if and only if uφ(w) is
present in G. In other words, G(i, φ) is the digraph obtained from G[Vi∗, V∗i] by identifying
each u ∈ Vi∗ \Vii with φ(u) ∈ V∗i \Vii and deleting loops. By (i), one can show that G(i, φ)
is a robust expander with linear minimum degree and hence (again by [20, 22]) contains
a Hamilton cycle C. Without loss of generality, assume y1, . . . , ys lie on C in this order.
One can easily check that each path yrCyr+1 along C corresponds to a path in G[Vi∗ ∪V∗i]
from yr to zr+1 and that these are vertex-disjoint and their union is Vi∗ ∪ V∗i.

As a result, for each i ∈ [k], we can cover Vi∗ ∪ V∗i by either a cycle (if Vij = ∅ for
all j ∈ [k] \ {i}) or a set of vertex-disjoint paths Qi from Vi∗ \ Vii to V∗i \ Vii. Note
that the union of all these cycles and path systems gives a vertex-disjoint union of cycles
covering G; indeed the path systems Qi and Qj only intersect in Vij (where paths in Qi

start and paths in Qj end) and in Vji (where paths in Qj start and paths in Qi end). Our
freedom to choose φ gives us some control over which pairs of endpoints are connected by
paths in the Qi, and by choosing the φ’s carefully, we can guarantee that the number of
cycles in the union is at most k.

2.3 Balancing the Partition

We say P = {Vij : i, j ∈ [k]} is a balanced partition of G if |Vi∗| = |V∗i| holds for each
i ∈ [k]. Here we explain how to balance the partition P given in Theorem 2.1 in order that
we can apply the methods descirbed in the previous subsection. We use the idea of path
contraction: consider a directed path in a digraph G and contract it so that the in- and
outneighbours of the new vertex are respectively the inneighbours of the path’s start vertex
and the outneighbours of the path’s end vertex. If the resulting graph can be partitioned
into ` vertex-disjoint cycles, then so can G by simply uncontracting the path. Therefore,
we seek a path system Q such that the contraction of Q makes the partition P balanced
but also does not destroy the other properties of Theorem 2.1; the latter can (almost) be
guaranteed by ensuring the number of edges of Q is small. It turns out (and is not difficult
to show) that it suffices to find path systems Qij using edges of G from Vi∗ to V∗j satisfying∑

j 6=i

e(Qij)−
∑
j 6=i

e(Qji) = |Vi∗| − |V∗i|.

We use a flow argument to find such a path system Q.
Our argument up this point gives a collection of at most k ≤ 1 + n/(qd + 1) vertex-

disjoint cycles that cover G, which is one more than stated in Theorem 1.3. In fact, we only
get 1 + n/(qd+ 1) cycles if Theorem 2.1 gives us a partition with k = 1 + n/(qd+ 1) and
Vij = ∅ for all i 6= j. By carefully making use of the additional structure in this situation,
we can reduce the number of cycles by 1.
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