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Abstract

A k-uniform tight cycle is a k-graph with a cyclic order of its vertices such that
every k consecutive vertices from an edge. We show that for k ≥ 3, every red-blue
edge-coloured complete k-graph on n vertices contains k vertex-disjoint monochro-
matic tight cycles that together cover n− o(n) vertices.
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1 Introduction
Monochromatic partitioning is an area of combinatorics that has its origin in a remark of
Gerencsér and Gyárfás [9] that any 2-edge-colouring of the complete graph Kn contains a
spanning path that consists of a red1 path followed by a blue path. In particular, every
2-edge-coloured Kn admits a partition of its vertex set into a red path and a blue path. In
a subsequent paper, Gyárfás [10] proved the stronger result that every 2-edge-coloured Kn

contains a red cycle and a blue cycle that share at most one vertex and together cover
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1We assume that the colours in a 2-edge-colouring are always red and blue.
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all vertices. Lehel conjectured that every 2-edge-coloured Kn can be partitioned into a
red cycle and a blue cycle. Here the empty set, a single vertex, and a single edge are
considered to be cycles. Lehel’s conjecture was first proved for large enough n by Łuczak,
Rödl and Szemerédi [15] using the regularity lemma. Allen [1] later gave a different proof
of this that does not use the regularity lemma, thus improving the bound on n. Bessy and
Thomassé [3] finally gave a short and elegant proof of Lehel’s conjecture for all n.

Here our interest lies in generalisations of Lehel’s conjecture to hypergraphs and tight
cycles. For related problems in hypergraphs about other types of cycles see [12, 16, 6].
See [11] and [17, Sections 7.4 and 9.7] for surveys on monochromatic partitioning.

For k ≥ 2, a k-graph (or k-uniform hypergraph) H is a pair of sets (V (H), E(H)) such
that E(H) ⊆

(
V (H)

k

)
(where for a set X,

(
X
k

)
denotes the set of all subsets of X of size k).

A k-uniform tight cycle is a k-graph with a cyclic order of its vertices such that its edges
are exactly the sets of k consecutive vertices in the order. From now on, any set of at
most k vertices is also considered a tight cycle.

The problem we want to consider is how to cover almost all vertices of every 2-edge-
coloured complete k-graph with as few vertex-disjoint monochromatic tight cycles as pos-
sible. For k = 3, Bustamante, Hàn and Stein [5] proved that in every 2-edge-coloured
complete 3-graph almost all vertices can be partitioned into a red and a blue tight cycle.
Subsequently, Garbe, Mycroft, Lang, Lo, and Sanhueza-Matamala [8] showed that in fact
there is a partition of all the vertices into two monochromatic tight cycles. Here it is
necessary to allow the two monochromatic tight cycles to possibly have the same colour.
Indeed for every k ≥ 3, there exists a complete graph on arbitrarily many vertices that does
not admit a partition of its vertices into a red and a blue tight cycle [13, Proposition 1].
In an earlier paper [13], the authors proved that for k = 4 it is also possible to almost
partition the vertices of every 2-edge-coloured 4-graph into a red and a blue tight cycle. In
the same paper, the authors also showed a weaker result for k = 5, that 4 vertex-disjoint
monochromatic tight cycles suffice to cover almost all vertices of every 2-edge-coloured
complete 5-graph. The only bound for general k that was known is given by a result of
Bustamante, Corsten, Frankl, Pokrovskiy and Skokan [4]. They showed that every r-edge-
coloured complete k-graph on n vertices can be partitioned into c(r, k) monochromatic
tight cycles. However, the constant c(r, k) that can be obtained from their proof is very
large. Indeed to cover almost all vertices they simply repeatedly find a monochromatic
tight cycle using the fact that the Ramsey number for the k-uniform tight cycle on N
vertices is linear in N .

Our aim here is to show a reasonable general bound on the number of tight cycles that
are needed to almost partition a 2-edge-coloured complete k-graph. Indeed we show that k
tight cycles suffice. We remark that this result is probably not tight. The only known
lower bound on the number of tight cycles needed is the trivial lower bound of 2.

Theorem 1.1. For every ε > 0 and k ≥ 3, there exists an integer n0 such that every 2-edge-
coloured complete k-graph on n ≥ n0 vertices contains k vertex-disjoint monochromatic
tight cycles covering at least (1− ε)n vertices.
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2 Sketch proof of Theorem 1.1
Our proof is based on a hypergraph version of Łuczak’s connected matching method
(see [14] for the original method). Roughly speaking the idea is as follows. Let K be
a 2-edge-coloured complete k-graph on n vertices. We apply the Regular Slice Lemma (a
form of the Hypergraph Regularity Lemma that is due to Allen, Böttcher, Cooley and My-
croft [2]) to Kred.2 Since any regularity partition for a k-graph is also a regularity partition
for its complement, this gives rise to a reduced k-graph R that is a 2-edge-coloured almost
complete k-graph. So a red edge i1 . . . ik in R means that Kred is regular with respect to
the corresponding clusters Vi1 , . . . , Vik and at least half the edges of K with one vertex in
each Vij , j ∈ [k] are red.3 It can be shown that there is a red tight cycle in K that contains
almost all of the vertices in

⋃
j∈[k] Vij . The idea is now to combine a matching M of red

edges in R into an even longer red tight cycle that covers almost all the vertices in the
clusters that are covered by M . However, in order for this to work we will need to be able
to construct a red tight path4 that goes from the clusters corresponding to one edge of M
to the clusters corresponding to another edge of M . So we require our red matching M
in R to be ‘connected’ in some sense. To this end, we need the following definitions. A
tight pseudo-walk (of length m from e to e′) in a k-graph H is a sequence of edges e1 . . . em
in H such that |ei ∩ ei+1| = k− 1 (and (e1, em) = (e, e′)). A k-graph H is tightly connected
if for every pair of edges e, e′ ∈ H, there is a tight pseudo-walk from e to e′ in H. A
tight component in a k-graph H is a maximal tightly connected subgraph of H. Let H
be a 2-edge-coloured k-graph. A red or blue tight component in H is a tight component
in Hred or in Hblue, respectively. A monochromatic tight component in H is a red or a blue
tight component in H. The hypergraph version of Łuczak’s connected matching method
that we need now roughly says the following. If R contains a matching that covers almost
all vertices and uses edges from at most k monochromatic tight components, then there
exists k monochromatic tight cycles in K that are vertex-disjoint and together cover al-
most all vertices. The proof of Theorem 1.1 is now reduced to proving that every almost
complete 2-edge-coloured k-graph contains a matching that covers almost all vertices and
only uses edges from at most k monochromatic tight components.

For a set S ⊆ V (H) with |S| ≤ k−1, we let NH(S) = {S ′ ∈
(
V (H)
k−|S|

)
: S∪S ′ ∈ E(H)} and

dH(S) = |NH(S)|. A k-graph H on n vertices is called (µ, α)-dense if, for each i ∈ [k − 1],
we have dH(S) ≥ µ

(
n

k−i

)
for all but at most α

(
n
i

)
sets S ∈

(
V (H)

i

)
and dH(S) = 0 for all

other sets S ∈
(
V (H)

i

)
. Note that the reduced graph R will typically be (1− ε, ε)-dense.

Our discussion on a hypergraph version of Łuczak’s connected matching method is
encapsulated in the following corollary from our previous work. When we say that a
statement holds for constants a and b with 0 < a� b, we mean that the statement holds
provided that a is chosen sufficiently small in terms of b. Moreover, if 1/n appears in such

2For a 2-edge-coloured k-graph H, we denote by Hred and Hblue the subgraph induced by the red edges
and the subgraph induced by the blue edges of H, respectively.

3For n ∈ N, [n] = {1, . . . , n}.
4A tight path is a k-graph with a linear order of its vertices such that every k-consecutive vertices form

an edge. Or alternatively a tight path is a k-graph obtained by deleting a single vertex from a tight cycle.
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a hierarchy then we implicitly assume that n ∈ N.

Corollary 2.1 ([13, Corollary 20]). Let 1/n � 1/m � ε � η � γ, 1/k, 1/s with k ≥ 3.
Suppose that every 2-edge-coloured (1 − ε, ε)-dense k-graph H on m vertices contains a
matching in H that covers all but at most ηm vertices of H and only contains edges from
at most s monochromatic tight components of H. Then any 2-edge-coloured complete k-
graph on n vertices contains s vertex-disjoint monochromatic tight cycles covering at least
(1− γ)n vertices.

3 A large matching using edges from few monochro-
matic tight components

By Corollary 2.1, to prove Theorem 1.1, it suffices to prove the following lemma.

Lemma 3.1. Let 1/n� ε� η � 1/k ≤ 1/2. Let H be a 2-edge-coloured (1− ε, ε)-dense
k-graph on n vertices. Then there exists a matching in H that covers all but at most ηn
vertices of H and only contains edges from at most k monochromatic tight components
of H.

The cases when k = 3 is already proved in [5] (in which they showed that a red and
a blue tight component suffice). The first step of the proof is to find a red and a blue
tight component R and B, respectively, of H such that almost all 2-subsets of V (H) are
contained in some edge of R ∪ B. One then finds a large matching in R ∪ B. Thus a
natural first step of proving Lemma 3.1 is to find a constant number of monochromatic
tight components of H, such that almost all (k−1)-subsets of V (H) are contained in some
edge of these tight components. However this is not possible when k ≥ 4 as shown by the
following example. Let V1, . . . , V` be an equipartition of a set of n vertices. Consider the
2-edge-coloured complete k-graph on

⋃
i∈[`] Vi such that an edge e is red if |e ∩ Vi| > k/2,

and blue otherwise. Observe that there are ` blue tight components. Moreover, each
(

Vi

k−1

)
is “covered” by a distinct blue tight component.

Instead, we will enlarge our maximal matching as we choose tight components as follows.
Consider a monochromatic tight component F∗ in H and let G1 = {F∗}. We say that
two monochromatic tight components F1 and F2 of H are adjacent if they have opposite
colours and there are edges e1 ∈ F1 and e2 ∈ F2 such that |e1 ∩ e2| = k − 1. Now for
each i ≥ 2 in turn, let Gi be the set of monochromatic tight components that are adjacent
to a monochromatic tight component in Gi−1 and not already in

⋃
j∈[i−1] Gj. Moreover,

for each i ≥ 1, we let E(Gi) =
⋃

F∈Gi F , that is, E(Gi) is the set of edges that are in
some monochromatic tight component F ∈ Gi. It is easy to see that all edges of H are
in
⋃

j∈[2k] E(Gj). In fact, if our initial monochromatic tight component F∗ spans almost all
vertices (such an F ∗ exists), then almost all edges of H are in

⋃
j∈[k] E(Gj). For simplicity,

we assume that H =
⋃

j∈[k] E(Gj).
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We now set W0 = V (H) and for each i = 1, . . . , k in turn, we let Mi be a maximal
matching in H[Wi−1] ∩

⋃
j∈[i] E(Gj) and Wi = Wi−1 \ V (Mi). Since

⋃
j∈[k] E(Gj) = H is

(1− ε, ε)-dense,
⋃

j∈[k]Mj is a maximal matching in H covering almost all vertices of H.
It remains to show that

⋃
j∈[k]Mj is contained in at most k monochromatic tight com-

ponents. Note that, for each i ∈ [k + 1],

H[Wi−1] ∩
⋃

j∈[i−1]

E(Gj) = ∅ (3.1)

by our choices of Mi−1 and Wi−1. Hence Mi ⊆ H[Wi−1] ∩ E(Gi). Therefore, it suffices to
show that H[Wi−1] ∩ E(Gi) (and so Mi) consists of edges from one monochromatic tight
component.

Suppose for a contradiction that there are two edges e1 and e2 in H[Wi−1]∩ E(Gi) that
are in different monochromatic tight components. Suppose further that |Wi−1| ≥ ηn (or
else

⋃
j∈[i−1]Mj is already an almost perfect matching). In H[Wi−1], there exists a tight

pseudo-walk P from e1 to e2. Recall that
⋃

j∈[i] E(Gj) is tightly connected, so
⋃

j∈[i] E(Gj)
contains a tight pseudo-walk P ′ from e2 to e1. Thus PP ′ (the concatenation of P and P ′)
is a closed tight pseudo-walk. We then define a nearly triangulated plane graph5 D such
that every vertex of D corresponds to an edge in H, PP ′ is on the outer face and any
walk in D corresponds to a tight pseudo-walk in H. We colour each vertex of D with
the same colour of its corresponding edge in H. All edges in E(Gi) (including e1 and e2)
have the same colour, say red. Since e1 and e2 are not in the same red tight component,
there is no red walk in D from e1 to e2. By adapting the proof of Gale [7] of the fact that
the Hex game cannot end in a draw, one deduces that H contains a blue tight pseudo-
walk P ∗ from an edge of P to an edge of P ′. Since P ′ is contained in

⋃
j∈[i] E(Gj), we have

P ∗ ⊆
⋃

j∈[i−1] E(Gj). Therefore, ∅ 6= P ∩P ∗ ⊆ H[Wi−1]∩
⋃

j∈[i−1] E(Gj) contradicting (3.1).
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