
Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications
EUROCOMB’23

Prague, August 28 - September 1, 2023

A new approach for the Brown-Erdős-Sós
problem

(Extended abstract)

Asaf Shapira∗ Mykhaylo Tyomkyn†

Abstract

The celebrated Brown-Erdős-Sós conjecture states that for every fixed e, every 3-
uniform hypergraph with Ω(n2) edges contains e edges spanned by e+ 3 vertices. Up
to this date all the approaches towards resolving this problem relied on highly involved
applications of the hypergraph regularity method, and yet they supplied only approx-
imate versions of the conjecture, producing e edges spanned by e+O(log e/ log log e)
vertices. We describe a completely different approach, which reduces the problem to
a variant of another well-known conjecture in extremal graph theory. A resolution of
the latter would resolve the Brown-Erdős-Sós conjecture up to an absolute additive
constant.
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1 Introduction

1.1 Background and previous results

Some of the most well studied problems in extremal combinatorics are those asking which
objects are guaranteed to appear in “dense” objects. Among notable examples are Roth’s
Theorem [18] on 3-term arithmetic progressions in dense sets of integers, and the Kővári-
Sós-Turán Theorem [16] on bipartite subgraphs of dense graphs. In this paper we consider
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a question raised by Brown, Erdős and Sós in 1973 [3, 2], which is one of the most famous
open problems of this type.

Given an integer e ≥ 3, one would expect a dense 3-uniform hypergraph (3-graph for
short) to contain e edges spanned by a small number of vertices. To quantify this, let
(v, e)-configuration denote a set of e edges spanned by at most v vertices. The Brown–
Erdős–Sós Conjecture (BESC) states that for every fixed e ≥ 3 and all large enough n,
every 3-graph with Ω(n2) edges contains an (e+ 3, e)-configuration. Despite a lot of effort
over the past 50 years, the BESC is only known to hold for e = 3, due to a result of Ruzsa
and Szemerédi [21].

Since even the e = 4 case of the BESC seems hopeless, it is natural to try to prove
approximate versions of the conjecture, namely that 3-graphs with Ω(n2) edges contain
(e + f(e), e)-configurations, for some slowly growing function f . The first result of the
above type was obtained by Sárközy and Selkow [22] who showed that every 3-graph with
Ω(n2) edges contains for every fixed e an (e + 2 + blog2 ec, e)-configuration. This was im-
proved by Solymosi and Solymosi [23] for the special case e = 10 from 15 to 14 vertices. A
general asymptotic improvement of the result of [23] was obtained recently by Conlon, Gish-
boliner, Levanzov and Shapira [8], who proved the existence of (e + O(log e/ log log e), e)-
configurations.

Besides its intrinsic interest, the BESC turned out to be one of the most influential
problems in extremal combinatorics. For example, the proof of the case e = 3 [21] was
one of the first applications of Szemerédi’s regularity lemma [24], and further introduced
the famous graph removal lemma. One of the main motivations for the development of
the celebrated hypergraph regularity method [11, 17, 19, 20, 26] was the hope that it will
lead to a resolution of BESC. While this did not materialize, the hypergraph regularity
method was instrumental in the latest works [8, 23]. However, although the above proofs
rely on highly involved applications of the hypergraph regularity method, it appears that
the following natural approximate version of the BESC is beyond their reach.

Conjecture 1.1 (Constant deficiency BESC). There is an absolute constant d so that for
every e and every large enough n, every 3-graph with Ω(n2) edges contains an (e + d, e)-
configuration.

1.2 A new approach for Conjecture 1.1

Our aim in this paper is to reduce Conjecture 1.1 to a problem involving graphs. Let us
denote by ex(n,H) the maximum number of edges in an n vertex graph not containing
a copy of H as a subgraph. The Kővári-Sós-Turán Theorem [16] which we mentioned
above, states that for every fixed t ≤ s, we have ex(n,Ks,t) = O(n2−1/t) where Ks,t is the
complete bipartite graph with parts of size t and s. This bound is known to be tight for
large s, see [4] for recent progress and references. One of the main research directions in
extremal graph theory is to obtain better bounds for sparser bipartite graphs. One such
problem was raised by Erdős [9], who conjectured that if H is a t-degenerate bipartite
graph then ex(n,H) = O(n2−1/t). While there are some approximate results towards this
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conjecture [1, 10, 13, 15], the question is open even for t = 2. Note that in general, the
conjectured bound O(n2−1/t) for t-degenerate bipartite graphs cannot be improved since the
aforementioned Ks,t is t-degenerate. In particular, the bound is tight for every t-degenerate
H which contains a copy of Ks,t. In light of this, Conlon [5] conjectured that if we assume
that a t-degenerate bipartite graph H has no Kt,t then we have ex(n,H) = O(n2−1/t−δ)
for some δ = δ(H) > 0. Lending plausibility to this conjecture, Sudakov and Tomon [25]
showed that if all vertices in one of the parts of H have degree at most t but H has no Kt,t

then ex(n,H) = o(n2−1/t). For t = 2 Conlon’s conjecture can be stated as:

Conjecture 1.2 (Conlon [5]). For every 2-degenerate C4-free bipartite graph H there exists
a constant δ = δ(H) > 0 such that

ex(n,H) = O(n3/2−δ) .

There are several results supporting Conjecture 1.2. For example, Conlon and Lee [7]
proved that if H is a bipartite graph so that each vertex in one of H’s sides has maximum
degree 2 (such a graph is clearly 2-degenerate) and H is C4-free then ex(n,H) = O(n3/2−δ)
for some δ = δ(H) > 0. Further results in this direction were obtained in [6, 14].

Let Hk,t be the family of 2-degenerate graphs on k vertices and 2k − t edges. We raise
the following weaker version of Conjecture 1.2.

Conjecture 1.3. There are absolute constants t, k0 such that for every k ≥ k0 and large
enough n, every graph with Ω(n3/2) edges contains a copy of some H ∈ Hk,t.

Let us briefly explain why Conjecture 1.3 is indeed weaker than Conjecture 1.2. It
is not hard to see that for every t and large enough k, the family Hk,t contains C4-free
graphs (see Claim 3.1). Conjecture 1.2 then states that if G has Ω(n3/2) edges then G
should contain a copy of every H ∈ Hk,t which is C4-free, while Conjecture 1.3 only asks
G to contain a copy of some H ∈ Hk,t. Note also that Conjecture 1.3 is weaker than the
statement that for every k ≥ k0 we have ex(n,H) = o(n3/2) for some H ∈ Hk,t, which is
itself weaker than Conjecture 1.2.

Our main result in this paper is the following alternative approach for resolving Con-
jecture 1.1.

Theorem 1.4. Conjecture 1.3 implies Conjecture 1.1.

Before turning to the proof of Theorem 1.4, we mention that it might very well be the
case that in Conjecture 1.3 we can replace the lower bound Ω(n3/2) by Ω(n3/2−δ) for some
δ = δ(k) > 0. Indeed, this bound is implied by Conjecture 1.2. It is not hard to see that
in this case the proof of Theorem 1.4 would give that for some absolute constant d and
for every e there is ε = ε(e) > 0 so that one can find (e + d, e)-configurations in every
3-graph with n2−ε edges. Such a result would be an approximate version of a conjecture
suggested by Gowers and Long [12], stating that 3-graphs with n2−ε edges contain (e+4, e)-
configurations.
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2 Proof of Theorem 1.4
To avoid confusion, we will refer to edges of a 3-graph as hyperedges. Fix e ≥ 3 and let G be
a 3-graph with n vertices and Ω(n2) hyperedges. We will rely on the well known observation
that in the context of the BESC one can assume that G is linear and 3-partite on vertex
sets (A,B, C). We now apply a variant of the construction of Solymosi and Solymosi [23].
Given G, define an auxiliary bipartite multigraph G′ as follows. Set V (G′) = (A,B) where
A =

(A
2

)
and B =

(B
2

)
. For two vertices {a1, a2} ∈ A and {b1, b2} ∈ B put an edge between

them if there is a c ∈ C so that a1b1c and a2b2c are hyperedges of G, and (independently)
put an edge between them if there is a c′ ∈ C such that a1b2c′ and a2b1c′ are hyperedges of
G. Since G is linear, each pair of vertices in G′ are connected by at most 2 edges. If we let
d(c) denote the degree of a vertex c ∈ C in G then

|E(G′)| =
∑
c∈C

(
d(c)

2

)
≥ |C|

( 1
|C|
∑

c∈C d(c)

2

)
= |C|

(
|E(G)|/|C|

2

)
≥ |E(G)|2

4|C|
.

Since e(G) = Ω(n2), |C| ≤ n, and |V (G′)| ≤ n2, we obtain |E(G′)| = Ω(|V (G′)|3/2). Since,
as noted above, each pair of vertices in G′ are connected by at most 2 edges, G′ has a
simple subgraph G which also contains Ω(|V (G)|3/2) edges. Therefore, if k0 and t are the
constants from Conjecture 1.3 and n is large enough, then we may assume the following.

Observation 2.1. For every k0 ≤ k ≤ e, the graph G contains a 2-degenerate bipartite
graph F on k vertices with at least 2k − t edges.

We would now like to understand what kind of (v, e)-configuration in G we get by
“unpacking” each of the graphs F in Observation 2.1. Optimistically, if v1, . . . , vk is the or-
dering of V (F ) certifying its 2-degeneracy, then every time we add a vertex vi to v1, . . . , vi−1
of degree 2 to the previous vertices, we expect to get 4 new vertices in G; these are c1, c2
and either a1, a2 (if vi ∈ A) or b1, b2 (if vi ∈ B). We also expect to get 4 new hyperedges in
G; these are the 4 hyperedges that correspond to the 2 new edges in G that connect vi to 2
of the vertices v1, . . . , vi−1. If this holds for all but a bounded number of F ’s vertices, then
we will get a (4k, 4k − Ok(1)) configuration, hence taking k ≈ e/4 would finish the proof.
Unfortunately, we do not know how to prove such a statement, since in certain cases (see
below) some of the 4 vertices/hyperedges might have already appeared when adding one of
the previous vertices vj. Instead, the main idea in Lemma 2.2 below is to show that F gives
rise to a (e′ + d, e′)-configuration, so that if e′ is not very close to 4k (as in the optimistic
analysis above) then we have d ≤ 0. It is then easy to show how repeated applications of
Lemma 2.2 give Theorem 1.4. In what follows G and G are those we discussed above.

Lemma 2.2. Let k ≥ t ≥ 4 be integers, and suppose F is a 2-degenerate subgraph of G
with k vertices and 2k − t edges. Then G contains a subgraph F such that

(1) |V (F)| − 4t ≤ |E(F)| ≤ 4k, and

(2) Either |E(F)| ≥ 4k − 104t3 or |E(F)| ≥ |V (F)| > 0.
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For the proof of Lemma 1.4 we refer the reader to the full version of the paper. We will
now show how to derive Theorem 1.4 from Lemma 2.2. Assuming Conjecture 1.3 holds
with constants t, k0 we show that Conjecture 1.1 holds with d = max{24k0, 3(4t+ 104t3)}.
Indeed, we claim that for every 0 ≤ e′ ≤ e we can find e′ hyperedges in G spanned by at most
e′+d vertices. If e′ ≤ max{8k0, 4t+104t3}, we just take e′ arbitrary hyperedges from G. For
larger e′ we apply Lemma 2.2 with the above t and with k = be′/4c ≥ k0 (by Observation 2.1
we know that G contains an F with these parameters). If the lemma returns a configuration
F ′ whose number of edges satisfies e′ − 104t3 − 4 ≤ |E(F ′)| ≤ e′ (and is on at most e′ + 4t
vertices), we just add to F ′ arbitrarily chosen e′ − |E(F ′)| ≤ 104t3 + 4 hyperedges to get
a set of e′ edges on at most e′ + d vertices. Otherwise, we have |E(F ′)| ≥ |V (F ′)| > 0
so we can remove F ′ from G and then restart the process with e′′ = e′ − |E(F ′)| (the
3-graph G \ F still has Ω(n2) hyperedges assuming n is large). We will obtain a set F ′′
of e′′ hyperedges on at most e′′ + d vertices, and can then return F ′′ ∪ F ′ as the set of e′
hyperedges on at most e′ + d vertices.

3 C4-free graphs in Hk,t

We say that a graph is exactly-(2, t)-degenerate if it can be obtained from a set of t isolated
vertices by repeatedly adding new vertices of degree exactly 2. Note that every exactly-
(2, t)-degenerate graph belongs to Hk,t. The following claim shows that Hk,t contains not
only C4-free graphs, but in fact graphs of arbitrary large girth.

Claim 3.1. For every g there is t = t(g) so that for every k ≥ t, there is a k-vertex
exactly-(2, t)-degenerate bipartite graph of girth at least g.

Proof. We claim that starting with an independent set of size t = t(g) (to be chosen later),
we can repeatedly add vertices so that each k-vertex graph in the sequence is exactly-
(2, t)-degenerate, bipartite, of girth at least g, and in addition satisfies the following two
conditions: (i) it has maximum degree at most 8 and (ii) it has a bipartition into two set
of sizes dk/2e and bk/2c. The initial independent set under a balanced bipartition clearly
satisfies these two conditions, so let us show how to add a vertex and maintain them.
Suppose the graph has k − 1 vertices and bipartition into sets A,B satisfying |A| ≤ |B|.
Since it has maximum degree at most 8, it contains O(k) pairs of vertices connected by a
path of length at most g − 2. Since the average degree of the vertices in B is less than 4,
at least half the vertices have degree at most 7. Hence, at least

(
(k−1)/4

2

)
≥ k2

50
of the pairs

of vertices in B both have degree at most 7. Assuming t is large enough so that k ≥ t
satisfies k2

50
−O(k) > 1, we thus have a pair of vertices u, v ∈ B so that both of them have

degree at most 7 and there is no path of length at most g− 2 connecting them. Hence, we
can add a new vertex to A and connect it to u and v.
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